

aurecon

Project: TINLEY MANOR SOUTH BANKS, KWADUKUZA.

Tinley Manor South Banks - Traffic Impact Assessment

Reference: 108498 Prepared for: Tongaat Hulett Developments Report Number: 8575/108498 Revision: 0 19 February 2014

Contact Person: Dave Kellock O31 7142511 073 8177984 Dave.kellock@aurecongroup.com

Document Control Record

Document prepared by:

Aurecon, South Africa (Pty) Ltd 1977/003711/07

P.O. Box. 932 Pinetown 3600 South Africa

T +27 31 714 2500

- F +27 31 702 0287
- E eThekweni@aurecongroup.com
- W www.aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Doci	ument control				à	urecon			
Repo	rt Title	Tinley Manor South Banks - Traffic Impact Assessment							
Docu	ment ID		Project Num	nber	108498				
File F	Path	P:\Projects\108498 Tinley Manor Traffic Planning\Report\TIA							
Client		Tongaat Hulett Developments	Client Contact		Rory Wilkinson				
Rev	Date	Revision Details/Status	Prepared by	Author	Verifier	Approver			
0	19 February 2014	1 st Draft	F. Barakzai	F. Barakzai	Dave Kellock	Mike van Tonder			
Curre	ent Revision	0							

Approval		
Author Signature	Approver Signature	
Name	Name	
Title	Title	

Contents

1.	Intro	duction	1
	1.1	Project Overview	1
	1.2	Scope of Study	2
	1.3	Previous Report	3
	1.4	Aims and Objectives	3
	1.5	General	3
2.	Exist	ing Road Network	4
	2.1	Road Descriptions	4
	2.2	North - South Road Link Parallel to N2	6
	2.3	Access to proposed and existing developments from N2	6
	2.4	Planned Changes to local Road Network	7
	2.5	Tinley Manor Village	7
3.	Exist	ing Traffic Conditions	8
	3.1	Critical Intersections	8
	3.2	National Route 2 (N2) Traffic Counts	9
	3.3	Method of analysis	11
	3.4	Intersection geometry and LOS	12
	3.5	Summary of Existing Traffic Conditions	21
	3.6	Comments and observations	21
4.	Prop	osed Mixed Use Development	22
	4.1	Development Potential	22
	4.2	Schematic Layout	23
	4.3	Vehicular Access	23
	4.4	Pedestrian Access	24
	4.5	Traffic Generation	24
	4.6	Trip Distribution	27
	4.7	Integrated Development Planning & Public Transport Network	28
	4.8	Internal Road Network	29
	4.9	Seaton Delaval	33
	4.10	Palm Lakes	34
	4.11	Inkwazi	35
	4.12	Layout of Tinley Manor South Banks Generated Traffic	37
	4.13	Layout of Traffic Generated by All New Major Proposed Developments	38
	4.14	Traffic Generated by All Developments & Existing Background Traffic	39

5.	Impa	ct on the External Road Network	40
	5.1	Analysis of Intersections – Traffic generated by proposed developments & background traffic	40
	5.2	Salt Rock Interchange & Tinley Beach (Palm Lakes) Interchanges	44
6.	Long	Term Background Traffic Growth Analysis	44
	6.1	Traffic Growth & Assessment Years	44
	6.2	Traffic Generated by All Developments & 10 Year Background Traffic	45
	6.3	Analysis of Intersections – Traffic generated by proposed developments & 10 year background traffic growth	46
	6.4	Proposed Intersection of P228/Access Road to Tinley Manor	50
	6.5	Salt Rock Interchange & Tinley Beach (Palm Lakes) Interchanges	51
	6.6	Comments & Recommendations	51
7.	Planr	ned Diamond Interchange	52
	7.1	Terms of Reference	52
	7.2	Traffic Volumes on Proposed Sheffield Beach Interchange	54
	7.3	Analysis of N2/P228 Interchange Proposed by Seaton Delaval	56
	7.4	Analysis of a Diverging Diamond Interchange	59
	7.5	Analysis of Merge and Diverge of on ramp and off ramp to/from N2	61
8.	Conc	Iusions & Recommendations	61

Appendices

Existing Traffic Flows – Traffic Counts Existing Traffic Flows – Movement Summaries Existing Traffic Flows & All New Developments Traffic – Movement Summaries 10 Year Background Traffic Flows & All New Developments – Movement Summaries Proposed Diamond Interchange by UWP – Movement Summaries Proposed Diverging Diamond Interchange by Aurecon South Africa – Movement Summaries

Index of Tables

Table 1: Geometry and LOS at P330/N2 interchange, west	12
Table 2: Geometry and LOS at P330/N2 Interchange, west – traffic signal implementation	13
Table 3: Geometry and LOS diagrams at P330/N2 interchange, East	14
Table 4: Geometry and LOS at P330/P474 intersection	15
Table 5: Geometry and LOS at P330/P474 intersection upgrade to traffic signals	16
Table 6: Intersection geometry and LOS	17
Table 7: Geometry and LOS at P467/N2 interchange west	18
Table 8: Geometry and LOS of P467/N2 interchange east.	19
Table 9: Geometry and LOS of P228/P467 intersection	20
Table 10: Summary of existing operating conditions	21
Table 11: Land Use Schedule for the Proposed Tinley Manor Development	22
Table 12: Summary of trip generation Tinley Manor South Banks Development	27
Table 13: Trip distribution in percentages Tinley Manor South Banks Development	27
Table 14: Trip distribution in traffic volumes Tinley Manor South Banks Development	28
Table 15: Total traffic volumes to and from Tinley Manor South Banks onto external network	29
Table 16: Seaton Delaval trip generation	33
Table 17: Seaton Delaval trip distribution	33
Table 18: Trip generation for Palm Lakes	34
Table 19: Trip distribution and traffic volumes for Palm Lakes	34
Table 20: Revised Palm Lakes traffic distribution	35
Table 21: Trip generation - Inkwazi	35
Table 22: Trip distribution in percentages – Inkwazi	36
Table 23: Trip distribution Inkwazi- Total traffic volumes	36
Table 24: Analysis of P330/P474 intersection with background + development traffic	40
Table 25: Proposed upgrade analysis of P330/P474 intersection with background + development	
traffic	41
Table 26: Analysis of P228/P474 intersection with background + development traffic	42
Table 27: Analysis of P228/P467 intersection with background + development traffic	43
Table 28: Summary of assessment years for major developments	44
Table 29: Proposed upgrade analysis of P330/P474 intersection with 10 year background traffic +	
development traffic	46
Table 30: Proposed upgrade analysis of P330/P474 intersection with 10 year background traffic +	
development traffic	47
Table 31: Analysis of P228/P474 intersection with 10 year background traffic + development traffic	48
Table 32: Analysis of P228/P467 intersection with 10 year background traffic + development traffic	49
Table 33: Layout of the proposed Traffic Circle at the intersection of the Access Road and P228	50
Table 34: Analysis of intersection of P228 and Access Road to Tinley Manor South Banks	51
Table 35: Analysis of diamond interchange proposed by Seaton Delaval - West intersection	56
Table 36: Analysis of diamond interchange proposed by Seaton Delaval - East intersection	57
Table 37: Analysis of Diverging Diamond West Intersection	59
Table 38: Analysis of Diverging Diamond East Intersection	60

Index of Figures

Figure 1: Locality Plan of THD owned land.		1
Figure 2: Section of THD land proposed to be developed,	Tinley Manor South Banks.	2
Figure 3: Existing Road Network		4
Figure 4: Adjacent and surrounding developments.		6
Figure 5: Traffic Count Locations		8
Figure 6: Existing peak hour traffic flows		10
Figure 7: Legend for LOS schematics		11
Figure 8: Layout of proposed development (s	source: Royal Haskoning DHV)	23
Figure 9: Tinley Manor South Banks Road Categories		30
Figure 10: Internal Road Descriptions		31
Figure 11: Traffic generated by the proposed Tinley Manor	South Banks development	37
Figure 12: Traffic generated by all new major proposed dev	velopments	38
Figure 13: Existing background + proposed developments	generated traffic	39
Figure 14: Traffic generated by all developments & 10 year	r background traffic growth	45
Figure 15: Layout of planned diamond interchange at km 1	4 on N2/27	53
Figure 16: Proposed new interchange traffic volumes - AN	1	54
Figure 17: Proposed new interchange traffic volumes – PM	1	54
Figure 18: Summary of traffic volumes on proposed interch	nange	55
Figure 19: Diverging Diamond Interchange at N2 – KwaMa	ashu designed by Aurecon South Africa	
(Pty) Ltd		58

LIST OF ACRONYMS

THD	Tongaat Hulett Developments			
SANRAL	South African National Roads Agency Limited			
KZNDoT	Kwa-Zulu Natal Department of Transport			
ILEMBE	Ilembe District Municipality			
KWADUKUZA KwaDukuza Municipality				
TIA	Traffic Impact Assessment			
Veh/h	Vehicles per hour			

1. Introduction

1.1 **Project Overview**

Tongaat Hulett Developments (THD) owns a large tract of land in the vicinity of Tinley Manor village, east and south of the town of KwaDukuza (formerly Stanger) on the KwaZulu-Natal north coast. The majority of the land owned by Tongaat Hulett lies east of the N2 National Road, between the freeway and the Indian Ocean but there are also pockets of land, owned by THD, to the west of the N2.

The land lies in a strip along the coastline, approximately two and a half kilometres wide and it extends from the north end of Sheffield Beach in the south to approximately one and a half kilometres north of the village of Tinley Manor, - a distance of approximately six kilometres. This gives an approximate area of 1 500 hectares, overall.

The Umhlali River forms a fairly wide flood plain/estuary between the N2 and the ocean, roughly bisecting the proposed land holding centrally. Figure 1 below shows the locality of the THD land in the vicinity of Tinley Manor.

Figure 1: Locality Plan of THD owned land.

1.2 Scope of Study

THD proposes to develop a section of their land south of the Umhlali River, shown in Figure 2 below. This section of land is referred to as Tinley Manor South Banks. The proposed development is to consist of:

- Private resorts
- Semi-public resorts
- Private residential units
- Mixed residential units
- Mixed use units i.e. offices, commercial & residential.

Figure 2: Section of THD land proposed to be developed, Tinley Manor South Banks.

Aurecon SA (Pty) Ltd was commissioned by THD to undertake a Traffic Impact Assessment for the proposed South Banks development as part of the Environmental Impact Assessment for the development. Note:

- The Umhlahi River splits the Tinley Manor precinct roughly in half and the area to the north (including the existing village of Tinley Manor) has its own access road, P467, which links with the N2 by means of a diamond interchange.
- There has been no planning, in recent times, for the area of land north of the Umhlali River owned by THD.
- There is no intention, at this stage, to bridge the river flood plain and indeed this may never happen.
- The South Banks development will therefore be developed ahead of and isolated from, the area of land owned by THD north of the river.

1.3 Previous Report

A status quo traffic report was submitted to THD by Aurecon titled "Status Quo Report on Transport in the Tinley Manor Precinct" report number 6478/108498 in January 2013.

The report analysed:

- Existing road networks.
- Existing traffic flows
- Level of service of existing road network elements
- Future developments in the area
- Planned new interchange

1.4 Aims and Objectives

The aims and objectives of this study are as follows:

- Analyse the existing traffic flows on the affected road network at critical intersections.
- Define the efficiency of the current operation of these critical intersections.
- Determine and quantify the traffic generated by the proposed new development on the internal road network.
- Define road reserve requirements and propose internal road widths and movement patterns within the proposed development.
- Determine and quantify the traffic generated by the proposed new development on the external road network.
- Consider all possible future planning for the study area.
- Import generated traffic volumes and their distributions of other major locally planned developments and incorporate these to the affected road network.
- Determine and quantify the impact of the traffic generated by all these proposed developments on the surrounding road network.
- Propose road network improvements.
- Propose mitigating recommendations and upgrades to address any safety and capacity issues that may be identified on both the internal and external road networks.
- Propose recommendations on access requirements.
- Liaise with the relevant stakeholders to ensure integrative planning for the area.
- Analyse the background traffic over the full period of analysis and test this traffic growth with the major locally planned developments affecting the road network in the vicinity of Tinley manor.
- Determine and quantify the impact of the traffic generated by all these proposed developments on the surrounding road network.
- Propose road network improvements.

1.5 General

The traffic impact assessment forming the subject of this report has been carried out generally in accordance with DoT report RR93/635, Manual for Traffic Impact Studies as well as the recommended guidelines for trip generation, Trip Generation Rates, 2nd Edition, 1995. Both documents are published by the Department of Transport, these guidelines being the accepted norms for this country. Reference was also made to "Trip Generation Manual", produced by the US Institute of Transportation Engineers (1991).

The analysis methods and procedures have been undertaken using the methods of the Highway Capacity Manual and the computer programme "SIDRA" developed by the Australian Road Research Board along with Akcelic and Associates which is recognised as one of the foremost traffic analysis tools in the world today.

2. Existing Road Network

The figure below shows the local and regional existing road network.

Figure 3: Existing Road Network

2.1 Road Descriptions

2.1.1 National Road 2 (N2)

The N2 runs from Cape Town in the south and it follows the east coast through the Cape Province and KwaZulu-Natal before terminating at the Swaziland border near Golela. In the vicinity of the proposed development, the N2 effectively forms the western boundary of the development and the Indian Ocean, some two and a half kilometres away, forms the eastern boundary.

The N2 is a dual carriageway freeway with 2 lanes in each direction in this area and a speed limit of 120km/h. It falls under the jurisdiction of the South African National Roads Agency Limited (SANRAL).

Of interest to this project are the following diamond interchanges on the N2:

- Salt Rock Road (P330) / Shakaskraal interchange in the south (existing).
- Tinley interchange (P467) in the north (existing).
- P228 interchange towards Sheffield Beach (planned).

The planned future Sheffield Beach diamond interchange is located between the other two interchanges (Salt Rock interchange and Tinley interchange), situated approximately 2.6 kilometres north of the Salt Rock interchange where road P228 crosses over the N2. This planned interchange will be discussed and analysed later in this report.

2.1.2 Provincial Road R102

The R102, which was the old national road, generally runs parallel to and west of, the N2 and it passes through villages / towns such as Tongaat, Shakaskraal and Stanger. Although an important route in itself, the R102 will not play a major role in the transport network relating to the Tinley Manor development because it is too far west to have an influence.

2.1.3 Provincial Road P467

P467 is presently the only external link serving Tinley Beach Village and it runs from the R102 at Shakaskraal in the west, through to Tinley Beach Village in the east. There is a diamond interchange at the N2 where P467 crosses the N2. P467 is a two way two lane road from the N2 to Tinley Beach.

2.1.4 Seaview Drive

Seaview Drive is the main north south road through the village of Tinley Beach and it runs from P467, through the village, to the Umhlali River in the south. There is no crossing over the Umhlali River except for the N2, further west.

2.1.5 Provincial Road P330 (Salt Rock Road)

P330, or the Salt Rock Road, lies at the southern end of the greater study area and it runs from the R102 in the west to Salt Rock village in the east. There is a diamond interchange at the N2 where P330 crosses it. P330 terminates as it enters Salt Rock and it runs eastwards to the coast where it becomes Basil Hulett Drive. It then turns south and runs through Umhlali Beach where it becomes Ocean Drive.

2.1.6 Provincial Road P474

P474 branches off P330, above, and proceeds eastwards to the north end of Salt Rock and the south end of Sheffield Beach. It becomes Colwyn Drive as it travels north through Sheffield Beach where it finally terminates.

2.1.7 Provincial Road P228

P228 branches off P474 and proceeds northwards parallel to the N2 then it swings west and crosses over the N2 and proceeds westwards to an intersection with P467 at Tinley Manor railway station. P228 is a surfaced road for a few hundred metres from P467 and then it has a gravel surface as it proceeds north and west, crossing the N2. The new diamond interchange is to be constructed at this crossing.

2.2 North - South Road Link Parallel to N2

Since development in this region of the north coast took off, the KwaDukuza planners have requested that each development, east of the N2, make allowance for a continuous north – south route linking between adjacent developments and providing continuity of movement at a local level, east of the N2.

There is a stagger (to the west when heading north) at P330, to the beginning of P474 which it follows until the junction with P228 which it follows northwards to Seaton Delaval where it presently ends.

The roads linkage to the north of the Umhlali River is not dependant or required by this development. The applicant is however willing to provide the opportunity for such a link to be constructed at some point in the future if and when required by the relevant authority.

2.3 Access to proposed and existing developments from N2

This area of the North Coast is expanding rapidly and numerous upmarket residential estates have been established and/or planned in recent years, shown below:

Figure 4: Adjacent and surrounding developments.

Clearly, this number of significantly sized developments will impact on the existing road layout and it is likely that internal and external infrastructure will have to be planned to carry future flows.

If we consider these developments from the south, it is clear that Simbithi and Mount Richmore will use either P339 (south-west of Figure 3 – west of Figure 4) or P330 (Salt Rock Road) to get to the N2 and will therefore not affect access to/from the proposed Tinley Manor development.

Dunkirk, Brettonwood, Croc Farm and Zululami will access the N2 via P474 and P330, again not affecting access to/from Tinley Manor but probably absorbing most of the spare capacity on P330 and its diamond interchange on N2.

Thus, to the east of N2, only Seaton Delaval will interface with Tinley Manor, as will Nkwazi and Palm Lakes, both situated west of N2 all as major generators of traffic in the locality that are predicted to

access the N2 to and from the proposed new diamond interchange. As stated earlier this proposed interchange will be discussed and analysed later in the report.

2.4 Planned Changes to local Road Network

The biggest planned changes to the existing road network in the vicinity of the site from approved developments are as follows:

- The upgrade of MR330 to a 4-lane road from the Salt Rock interchange on the N2 to MR228 which is a condition of approval for the Richmont development, the Brettenwood Estate commercial development and for a new shopping centre located at the northeast quadrant of the Salt Rock interchange on the N2.
- The upgrade of MR228 from MR330 to MR474 which is a condition of approval for the Brettenwood Estate commercial development.
- The upgrade of MR228 from MR474 to the Palermo access in the Seaton Delaval Development which is a condition of approval for the first 600 residential units of the Seaton Delaval development.
- The proposed new Sheffield Beach interchange on the N2 located at the existing MR228 bridge over the N2 which is a condition of approval of the remaining 700 residential units of the Seaton Delaval development.

2.5 Tinley Manor Village

The existing beach village of Tinley Manor, north of the Umhlahi River, is quite small, being approximately two kilometres in length and around 300 metres in width. It consists of two primary roads that run parallel to the coastline with Seaview Drive being the closest to the ocean and providing access to sea front properties. Oceanview Drive is situated one block further inland and it serves residential properties along its length.

Both of these roads connect to provincial road P467 in the north which is the only external connector for Tinley Manor, running north-west from the village to a diamond interchange on the N2 and onwards towards the R102 and Shakaskraal as shown in figure 3.

3. Existing Traffic Conditions

The contents of this chapter have mainly (with additions) been extracted, verbatim, from Aurecon South Africa (Pty) Ltd report number 6478/108498/1 of August 2012 entitled "Status Quo Report on Transport in the Tinley Manor Precinct".

3.1 Critical Intersections

As a starting point, towards documenting existing traffic conditions in the overall area, traffic counts were carried out by Bala Survey and Research on 13 August 2012 at the following locations which were deemed as being the critical intersections affecting the efficiency of the local road network.

- N2/Salt Rock interchange (P330) (both intersections)
- N2/Tinley Manor (P467) interchange (both intersections)
- The P330/P474 intersection
- The P474/P228 intersection
- The P228/P467 intersection

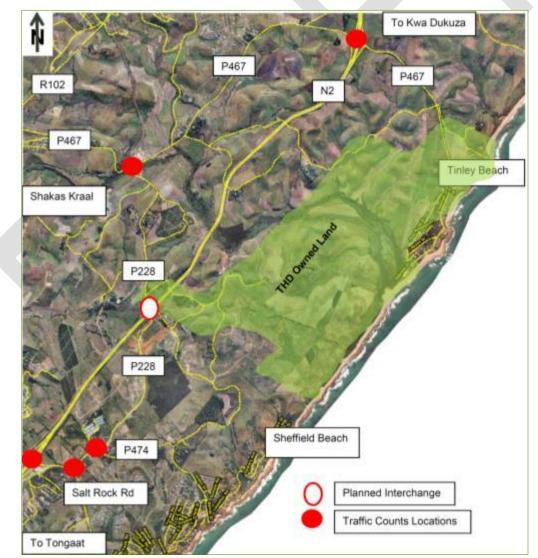


Figure 5: Traffic Count Locations

3.2 National Route 2 (N2) Traffic Counts

In addition to the traffic count locations as shown in figure 5 previously, traffic counts on the N2 were extracted from the SANRAL 2011 yearbook at the following locations:

- Salt Rock interchange
- Umhlali River
- Mvoti Toll Plaza

Note: The information extracted from the SANRAL yearbook sites should be treated with caution as the flows represent highest hourly volume by direction but not hourly volumes that correspond with the counted flows. They are indicative only.

During the analysis of the proposed Sheffield Interchange, it was felt that the traffic counts from 2011 were not an accurate indication of the current volumes of traffic on the N2. Therefore traffic counts were also carried out on the N2 both in the northbound and southbound direction in each lane where the P228 crosses over the N2 by Bala Survey and Research on 16th January 2014 as indicated on Figure 5 at the location "Planned Interchange".

The AM and PM peak hours were found to be from 07:00 to 08:00 and from 16:15 to 17:15 and the traffic volumes on the local road network during these peak hours are as shown below in Figure 6.

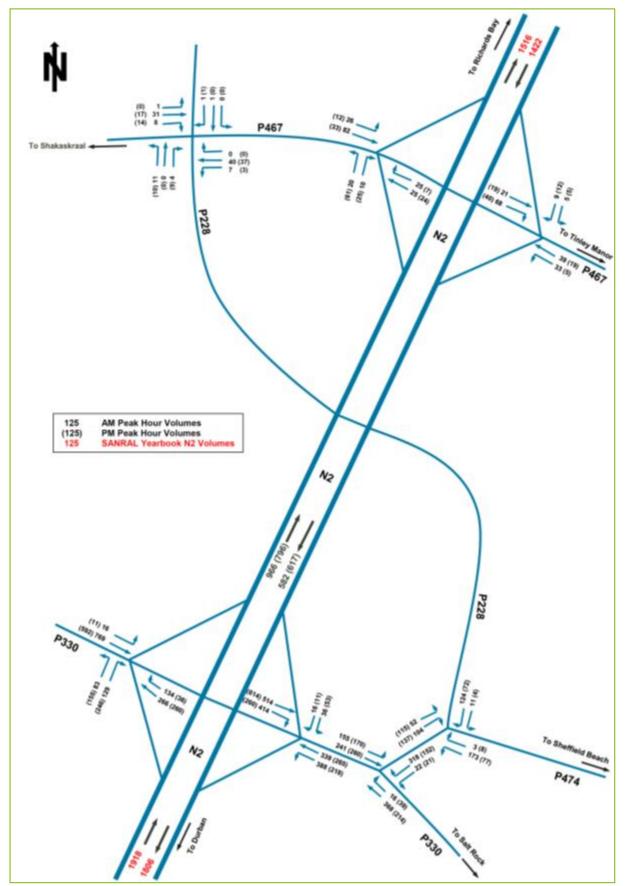


Figure 6: Existing peak hour traffic flows

3.3 Method of analysis

The existing traffic flows were analysed using the computer suite SIDRA to indicate the Level of Service (LOS) of traffic operations on the various elements of the road network.

Level of Service (LOS) is defined as a qualitative measure of the operational conditions within a traffic stream as perceived by road users. This definition generally describes these traffic conditions in terms of speed, travel times, freedom to manoeuvre, traffic interruptions, comfort, convenience and safety. There are six levels of service used to describe the quality of travel on the road network. Each of these levels is given a letter designation from A to F, with LOS A representing the best (free-flow) operating conditions while LOS F represents the least desirable (severely congested) conditions.

The road network surrounding the proposed Tinley Manor Development will be analysed in detail and the current levels of service on the existing road network will be discussed. The levels of service at each intersection will be presented schematically. The following legend will be used to depict the LOS of each movement at the intersections.

		evel of Servi		C		
LOS A	LOS B	LOS C	LOS D	LOS E	LOS F	Continuous

Figure 7: Legend for LOS schematics

3.4 Intersection geometry and LOS

3.4.1 P330 (Salt Rock Road) / N2 Interchange – West - STOP

The intersection geometry and SIDRA analyses of the AM and PM peak hours at the P330/N2 interchange west junction are shown below. This is a priority junction.

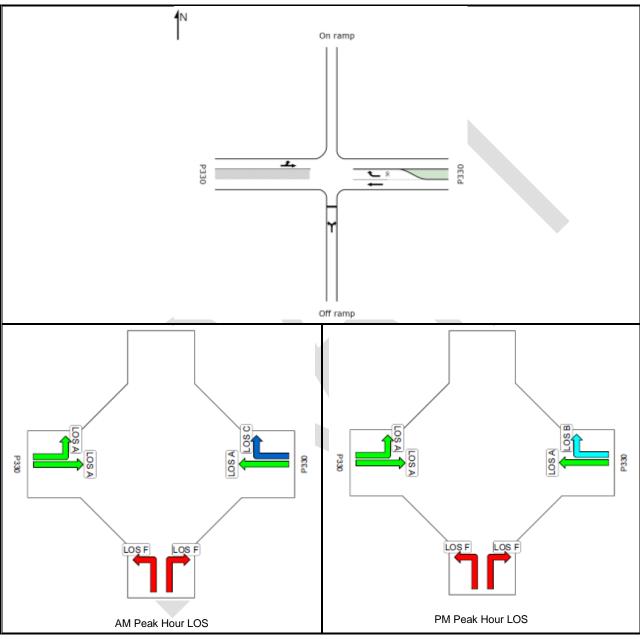


Table 1: Geometry and LOS at P330/N2 interchange, west

It can be seen that, in both peak hours, the level of service on the northbound off ramp is F for both the left and right turn movements while the through movements on P330 are operating at very good levels of service. This is fairly typical of a priority junction where there are high volumes on the through road. The AM LOS F and PM LOS F exhibit long queue lengths and traffic signalising of this intersection is recommended immediately. This will now be investigated.

Below shows a potential upgrade to this intersection investigating the implementation of traffic signals.

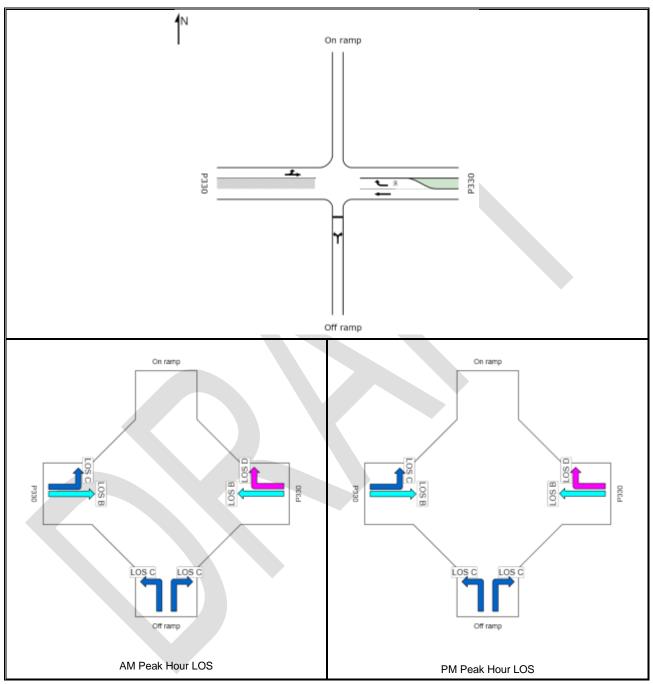


Table 2: Geometry and LOS at P330/N2 Interchange, west - traffic signal implementation

The existing geometry of the intersection is maintained. Although it may be advisable to have separate right and left turn lanes at the south approach to further increase the intersection's capacity.

As can be seen from the LOS diagrams in Table 2 above, signalisation significantly increases the efficiency of this intersection. There is also spare capacity in the intersection for future traffic growth upon implementation of traffic signals.

3.4.3 P330/N2 Interchange – East - STOP

The intersection geometry and SIDRA analyses of the AM and PM peak hours at the P330/N2 interchange east junction are shown below. This is a priority junction.

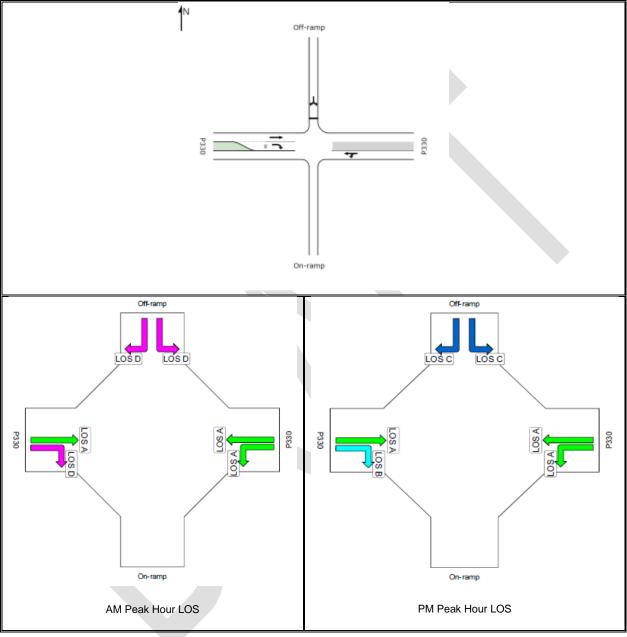


Table 3: Geometry and LOS diagrams at P330/N2 interchange, East

It can be seen that all Levels of Service are acceptable although there are several movements operating at LOS D in the AM peak hour which is an indication that there is not much spare capacity at this intersection.

Based on uniformity and future traffic growth it is recommended that this East intersection of the diamond interchange be signalised simultaneously with the West intersections signalisation.

3.4.4 P330/P474 Intersection - STOP

The intersection geometry and SIDRA analyses of the AM and PM peak hours at the P330/P474 intersection are shown below. This is a priority junction.

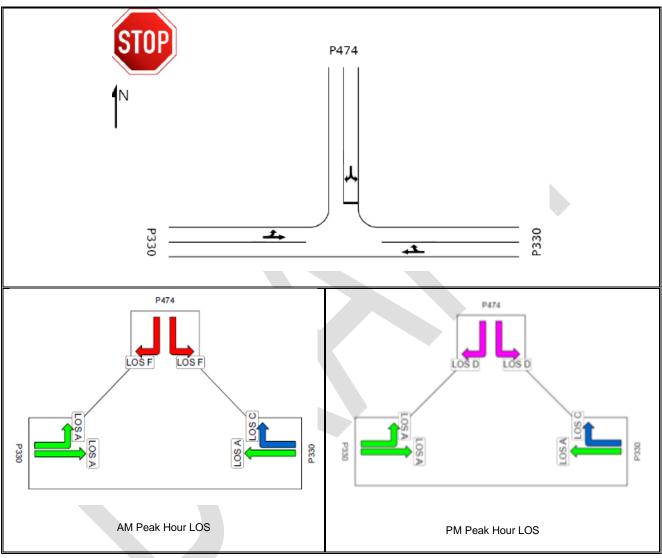


 Table 4: Geometry and LOS at P330/P474 intersection

It can be seen that the P474 approach is operating at LOS F in the AM peak hour which is because of the fairly heavy and continuous through flows on P330. There is also a high right turn volume from the P474 onto the P330. The indications are that this intersection presently requires upgrading.

Investigation into a proposed upgrade follows.

3.4.5 P330/P474 Intersection – Proposed upgrade to traffic signals

The intersection geometry and SIDRA analyses of the AM and PM peak hours at the P330/P474 intersection are shown below. This is a priority junction.

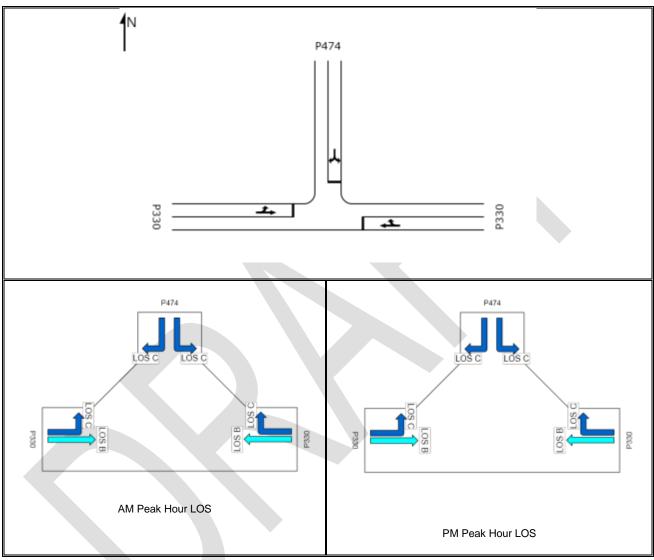


Table 5: Geometry and LOS at P330/P474 intersection upgrade to traffic signals

The existing geometry of the intersection is maintained. Although it may be advisable to have separate right and left turn lanes at the south approach to further increase the intersections capacity.

As can be seen from the LOS diagrams in Table 5 above, signalisation significantly increases the efficiency of this intersection. There is also spare capacity in the intersection for future traffic growth upon implementation of traffic signals.

3.4.6 P474 / P228 Intersection

The intersection geometry and SIDRA analyses of the AM and PM peak hours at the P474/P228 intersection are shown below. This is a priority junction.

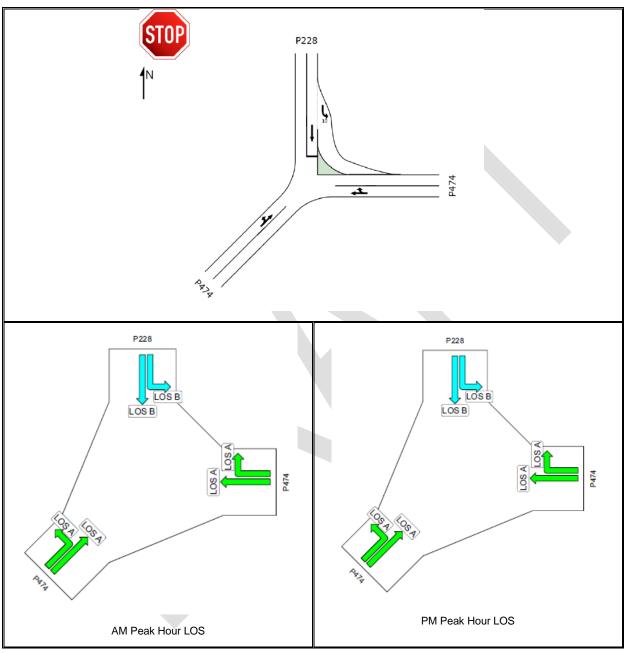


Table 6: Intersection geometry and LOS

It can be seen that all levels of service are good at this lightly trafficked intersection. There is also sufficient capacity for future traffic growth.

3.4.7 4.1.5 P467/N2 Interchange West - STOP

The intersection geometry and SIDRA analyses of the AM and PM peak hours at the P467/N2 interchange west junction are shown below. This is a priority junction.

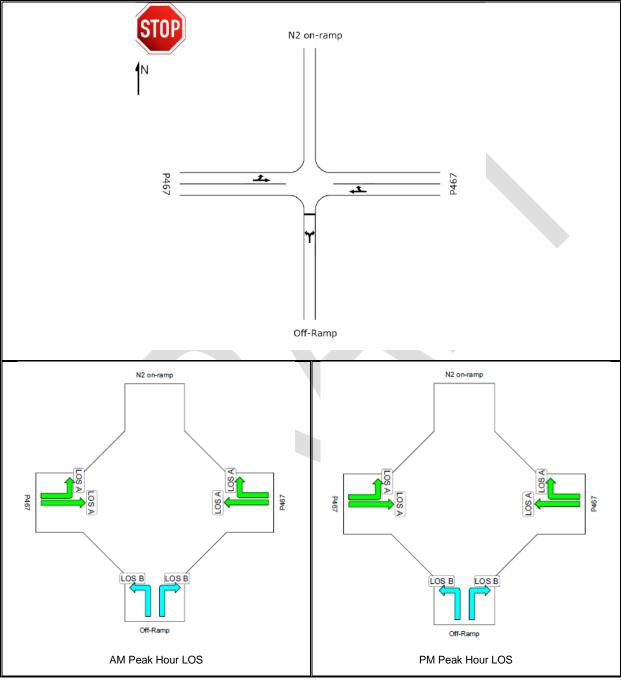


Table 7: Geometry and LOS at P467/N2 interchange west

This intersection operates at good Levels of Service in both peak hours, primarily due to the low traffic volumes experienced at present. There is sufficient capacity to handle future traffic growth.

3.4.8 P467/N2 Interchange East - STOP

The intersection geometry and SIDRA analyses of the AM and PM peak hours at the P467/N2 interchange east junction are shown below. This is a priority junction.

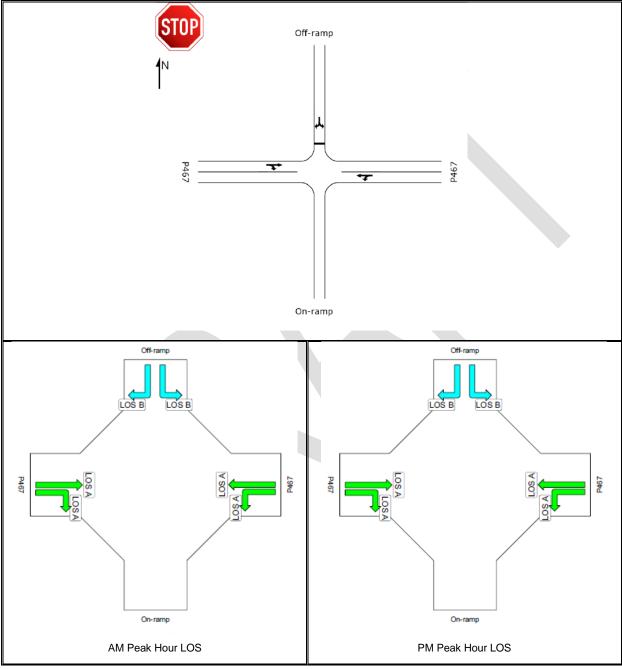


Table 8: Geometry and LOS of P467/N2 interchange east.

It can be seen that all Levels of Service are excellent at this lightly trafficked intersection. There is sufficient capacity to handle future traffic growth.

3.4.9 P228/P467 Intersection

The intersection geometry and SIDRA analyses of the AM and PM peak hours at the P228/P467 are shown below. This is a priority junction.

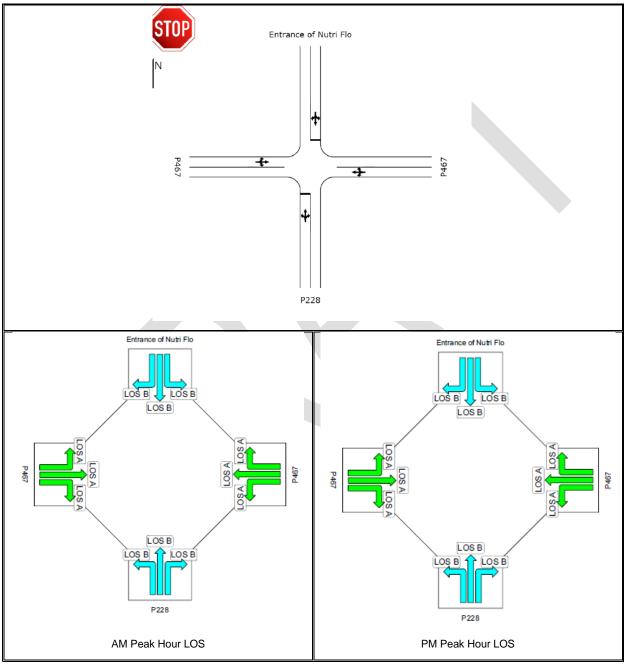


Table 9: Geometry and LOS of P228/P467 intersection

It can be seen that all Levels of Service are excellent at this lightly trafficked intersection.

3.5 Summary of Existing Traffic Conditions

The following table summarises the existing (2012) conditions at the various intersections.

INTERSECTION	OPERATING CONDITIONS (2012)	Worst LOS		
		АМ	РМ	
P330 / N2 ramps Salt Rock Interchange West side of N2	Good conditions on P330 but congestion/delays on off- ramp. Needs signalisation.	F	F	
P330 / N2 ramps Salt Rock Interchange East side of N2	Acceptable conditions throughout but ramp movements nearing capacity. Should be signalised at same time as west side.	D	С	
P330 / P474	Poor conditions on P474 stop street in AM peak causing delays on minor road. Needs traffic signalisation.	F	D	
P474 / P228	Low traffic volumes. Good conditions.	В	В	
P467 / N2 ramps Tinley Manor Interchange West side of N2	Low traffic volumes. Good conditions.	В	В	
P467 / N2 ramps Tinley Manor Interchange East side of N2	Low traffic volumes. Good conditions.	В	В	
P228 / P467	Low traffic volumes. Good conditions.	В	В	

Table 10: Summary of existing operating conditions

3.6 Comments and observations

- High volumes of traffic are witnessed approaching from the south via the N2. The LOS F witnessed is primarily due to this. It is recommended that these critical intersections be addressed due to the high growth rate of the area.
- The high volumes of traffic are primarily witnessed in tidal flow, i.e. outgoing trips from the residential developments in the AM peak hour and inbound trips towards the residential developments in the PM peak hour.
- Congestion and delays at lightly trafficked intersections are likely to increase due to the construction of several new residential estates in the area.

4. Proposed Mixed Use Development

4.1 Development Potential

As stated earlier, THD proposes to develop a large section of their land known as Tinley Manor South Banks. Tinley Manor South Banks will be a new residential, resort and commercial estate with a mix of lifestyle options including food production zones, integrated through a well-designed, high quality, safe and secure network of public spaces and commercial and social facilities. It will have a human scaled settlement form that promotes the use of non-motorised transport, social engagement and community cohesion as well as care for the environment and the sustainable use of natural resources.

The site structure is predetermined largely by the geographic elements of the site i.e. Ecology, topography, geology and hydrology. These have been integrated into an open space network which along with existing and proposed movement corridors creates developable pockets of land. The ocean, Umhlahi River, the adjacent proposed development Seaton Delaval and the N2 are the main boundaries of the site, whilst the internal wetland systems and associated geophysical attributes of the locality into development blocks. Table 11 below shows the summarised land use schedule for the proposed Tinley manor South Banks Development.

							· · · · · · · · · · · · · · · · · · ·	
	Area/ Ha	% Total	% Dev	FAR	Bulk (m ²)	Units	Height (Storeys)	
Total Site Area	437.00							
Open Space System	278.30	61.8	0.0					
Residential 1 (High Density Residential)	33.50	7.7	21.4	1.0	335000	(75units/ha) 2513	2 to 6	
Residential 2 (Low -Medium Residential)	64	14.6	40.9	0.5	320000	(35units/ha) 1120	max 3	
Low Impact Mixed Use	2.90	0.7	1.9	1.0	29000	(60%res @75 units/ha) = 131 units	max 3	
Medium Impact Mixed Use	17.80	4.1	11.4	1.0	178800	(40%res @75 units/ha) = 534 units	2 to 6	
Resort 1	31.6	7.2	20.2	0.25	79000	55m2/room 1436rooms	max 4	
Resort 2	2.80	0.6	1.8	0.25	7000	55m2/room 127rooms	max 4	
Service Area and Nursery	6.10	1.4	3.9					
TOTAL DEVELOPABLE	158.70	8.70 36.32 100 948800 4298 units 1563 resort rooms						

Table 11: Land Use Schedule for the Proposed Tinley Manor Development

- Residential 1 (High Density): Two precincts that consist of clusters of a high density of residential developments to accommodate building heights up to six stories.
- Residential 2 (Low to Medium Density): Five precincts each made up of one to three distinct housing clusters.
- Low Impact Mixed Use: A centrally located commercial and community node along with high density housing.
- Medium Impact Mixed Use: Located outside the main estate consisting of commercial and residential components.
- Resort: Five precincts that aim to optimise coastal frontage.
- Service Area & Nursery: This area aims to provide for the maintenance and operational requirements of the estate.

4.2 Schematic Layout

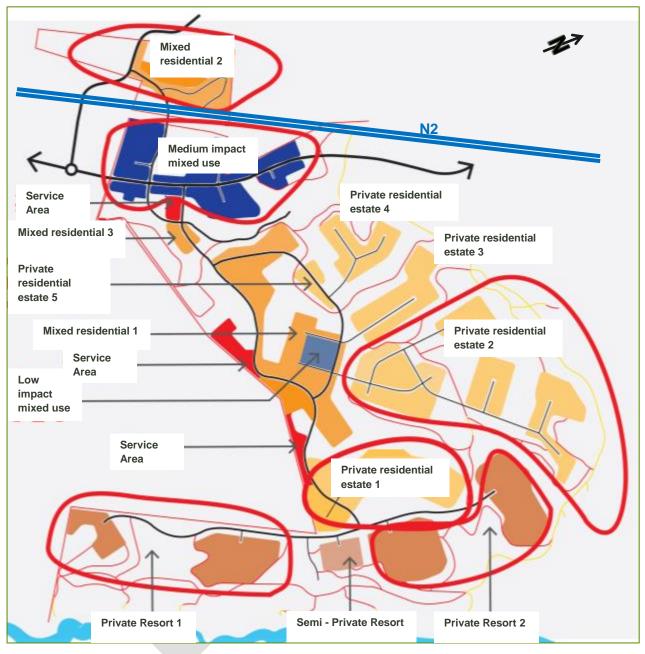


Figure 8: Layout of proposed development

(source: Royal Haskoning DHV)

4.3 Vehicular Access

The majority of the Tinley Manor South Banks Development lies east of the N2. Most of the traffic generated by the development is predicted to arrive and depart to and from north and south on the N2.

The primary access point to the development is from the proposed Sheffield Beach interchange on the N2 and then east onto the P228. Entrance to the development is on the north end of P228. A small proportion of the trips generated by this section of the development are also predicted to arrive from

Umhlahi and Salt rock in the south. This traffic will use the P330 and P474 traversing eastbound from these towns and then north parallel the N2 on the P228.

A minor number of trips are also expected to arrive from further inland in the west. This traffic will use the P467 and traverse eastbound over the N2 on the P228 and into the development.

A portion of the residential development is located west of the N2. The traffic generated by this portion is also expected to use the proposed Sheffield Beach interchange with the N2, east via the P228 and into the development.

4.4 Pedestrian Access

The majority of the pedestrian traffic generated by this proposed development is expected to originate from the semi-rural and informal residential areas situated between the town of Kwa Dukuza and the site. Most of these pedestrians will be arriving from west of the N2. The proposed Sheffield Beach interchange is to provide a pedestrian walkway. The main pedestrian access is to be alongside the main access road with dedicated pedestrian walk ways provided.

4.5 Traffic Generation

This section predicts realistic volumes of traffic likely to be generated by the proposed Tinley Manor South Banks Development. Careful consideration and engineering judgement have been applied to the trip generation rates that are listed in the South African Trip Generation Manual and the "Trip Generation Manual", produced by the US Institute of Transportation Engineers (1991). Trip generation rates that were recommended in the Traffic Impact Assessments of similar developments in the locality were also used as guidelines and indicators to achieve the most realistic and accurate volume traffic to be generated by Tinley Manor South Banks Development.

It was deemed necessary to apply a reduced trip generation rate for the residential component of the development. The South African Trip Generation manual indicates a rate of 1.5 two way trips per dwelling unit for high income residential and 1.1 two way trips per dwelling unit for cluster housing in the AM and PM peak hours respectively.

A reduced trip generation rate of 0.75 two way trips per dwelling unit has been applied (as was done for inter alia Seaton Delaval, Palm Lakes and to an extent Inkwazi, all being the adjacent major traffic generating developments). The logic behind this is as follows:

- Internal trips, possibly not by vehicle, for people who live and work in the development.
- People who work from home which is an increasing phenomenon linked to the information era.
- Homes that are not permanently occupied such as holiday homes and second homes.
- Homes occupied by retired people which do not generate peak hour trips.

The trip generation rates of the commercial and office precincts of the proposed development have not been reduced and have been extracted from the South African Trip Generation manual. The trip generation rate of the resort precinct was not available in the South African Trip Generation manual and has hence been extracted from "Trip Generation Manual", produced by the US Institute of Transportation Engineers (1991).

The following illustrates the anticipated generated peak hour trips per component of the development (see Figure 8).

- 4.5.1 Private residential estate (1) 19.4 ha & 340 Dwelling Units
 - Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
 - 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 255 trips
- 4.5.2 Private residential estate (2) 27.7 ha & 485 Dwelling Units
 - Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
 - 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 364 trips
- 4.5.3 Private residential estate (3) 8.9 ha & 156 Dwelling Units
 - Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
 - 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 117 trips
- 4.5.4 Private residential estate (4) 6.6 ha & 115 Dwelling Units
 - Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
 - 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 87 trips
- 4.5.5 Private residential estate (5) 1.4 ha & 24 Dwelling Units
 - Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
 - 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 18 trips
- 4.5.6 Mixed residential estate (1) 21.7 ha & 1628 Dwelling Units
 - Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
 - 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 1221 trips
- 4.5.7 Mixed residential estate (2) 10.4 ha & 780 Dwelling Units
 - Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
 - 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 585 trips
- 4.5.8 Mixed residential estate (3) 1.4 ha & 105 Dwelling Units
 - Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
 - 0.75veh/h two-way per dwelling unit for the weekday peak hour = 79 trips
- 4.5.9 Medium impact mixed use Commercial component 5.34 ha
 - Directional split: AM (50 in: 50 out), PM (50 in: 50 out).
 - 30% of 17.8 ha = 5.34 ha. Less 50% (Parking and unused) = 2.67 ha GLA
 - Therefore $GLA = 26700m^2$
 - Fri PM: 7.01 trips/100m², Sat AM: 11.76 trips/100m²
 - Therefore Fri PM: 1874 trips & Sat AM: 3140 trips

4.5.10 Medium impact mixed use – Offices component – 5.34 ha

- Directional split: AM (85 in: 15 out), PM (15 in: 85 out).
- 30% of 17.8 ha = 5.34 ha. less 50% (Parking and unused) = 2.67 ha GLA
- Therefore $GLA = 26700m^2$
- 2.3 veh/h two-way per 100m² of GLA for the weekday peak hour = 614 trips

4.5.11 Medium impact mixed use – Residential component – 7.12 ha & 534 Dwelling Units

- Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
- 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 401 trips

4.5.12 Private resort (1) – 13.2 ha & 600 Rooms

- Directional split: AM/PM (50 in: 50 out).
- AM : 0.33 veh/h two-way per room for the weekday peak hour = 198 trips
- PM : 0.5 veh/h two-way per room for the weekday peak hour = 300 trips
- SA Trip generation rates General hotel: 0.7veh/h/room. No value for residential private resort.
- "Manual for Engineering Service Contributions and Traffic Impact Assessments in Gauteng" Hotel (residential): AM 0.4 veh/h/room, PM 0.45 veh/h/room.
- "Institute of transportation engineers" Resort Hotel : AM 0.33 veh/h/room, PM 0.48 veh/h/room
- 4.5.13 Private resort (2) 18.5 ha & 840 Rooms
 - Directional split: AM/PM (50 in: 50 out)
 - AM : 0.33 veh/h two-way per room for the weekday peak hour = 277 trips
 - PM : 0.5 veh/h two-way per room for the weekday peak hour = 420 trips

4.5.14 Semi-private resort – 2.8 ha & 127 Rooms

- Directional split: AM (45 in: 55 out), PM (55 in: 45 out).
- AM : 0.33 veh/h two-way per room for the weekday peak hour = 42 trips
- PM : 0.5 veh/h two-way per room for the weekday peak hour = 64 trips

4.5.15 Low impact mixed use (residential) – 2.9 ha & 131 Dwelling Units

- Directional split: AM (25 in: 75 out), PM (75 in: 25 out).
- 0.75 veh/h two-way per dwelling unit for the weekday peak hour = 98 trips

LAND USE	UNITS/GLA	GEN RATE	SPLIT	TRIPS	AM PEAK		PM PEAK	
					IN	OUT	IN	OUT
Private residential estate 1	340 Du / 19.4 Ha	0.75 / du	25 : 75	255	64	64 191		64
Private residential estate 2	485 Du / 27.7 Ha	0.75 / du	25 : 75	364	91	273	273	91
Private residential estate 3	156 Du / 8.9 Ha	0.75 / du	25 : 75	117	29	29 88		29
Private residential estate 4	115 Du / 6.6 Ha	0.75 / du	25 : 75	87	22	22 65		22
Private residential estate 5	24 Du / 1.4 Ha	0.75 / du	25 : 75	18	5	13	13	5
Mixed residential 1	1628 Du / 21.7 Ha	0.75 / du	25 : 75	1221	305	916	916	305
Mixed residential 2	780 Du / 10.4 Ha	0.75 / du	25 : 75	585	146	439	439	146
Mixed residential 3	105 Du / 1.4 Ha	0.75 / du	25 : 75	79	20 61		61	20
Medium impact mixed use (commercial)	30% of 17.8 Ha = 5.34 Ha – 50% (Parking and unused). GLA = 2.67Ha	PM: 224.5 * GLA ^{-0.34} Sat AM: 250.2 * GLA ^{-0.3}	50:50	1874/ 3140	1570	1570	937	937
Medium impact mixed use (Offices)	30% of 17.8 Ha = 5.34 Ha – 50% (Parking and unused). GLA = 2.67Ha	2.3 / 100m ² GLA	85 : 15	614	522	92	92	522
Medium impact mixed use (residential)	40% of 17.8 Ha = 7.12 Ha /534 Du	0.75 / du	25:75	401	100	301	301	100
Private resort 1	600 rooms /13.2 Ha	0.33 (0.5) / room	50 : 50	198/ 300	99	99	150	150
Private resort 2	840 rooms /18.5 Ha	0.33 (0.5) / room	50 : 50	277/ 420	138	139	210	210
Semi private resort	127 rooms / 2.8 Ha	0.33 (0.5) / room	55 : 45	42/ 64	19	23	35	28
Low impact mixed use (residential)	131 Du / 2.9 Ha	0.75 / du	25 : 75	98	25	25 73		25
Total					3155	4343	3844	2654

The above trip generation rates are summarised in the table below:

Table 12: Summary of trip generation Tinley Manor South Banks Development

4.6 Trip Distribution

The distribution of the generated trips to the internal and external road network is to be as follows:

TRIP ORIGIN / END	LAND USE					
	Residential	Resort	Commercial / Office			
To / from South via N2/P228	60%	70%	10%			
To / from Umhlali via P474, P330	2%	2%	5%			
To / from Salt Rock via P330	3%	3%	4%			
To / from North via N2	18%	12%	3%			
To / from west via P228	2%	8%	4%			
Internal	15%	5%	75%			
Total	100%	100%	100%			

Table 13: Trip distribution in percentages Tinley Manor South Banks Development

4.6.1 Residential

The majority of the residential generated traffic is expected to be commuter trips southbound on the N2 towards Ballito/eThekwini in the AM peak hour and back into the development in the PM peak hour. 18% of the traffic is expected to and from north via the N2 towards KwaDukuza and 15% internal trips within the development.

4.6.2 Resort

The majority of the resort generated traffic is expected to be from the greater Durban area. A small percentage is also expected from Northern KZN.

4.6.3 Commercial & Office

It is predicted that the majority of the offices and commercial dwellings are to be owned or rented by residents within the development. A small percentage of low and middle class employees are expected to commute daily, hence representing the external trips generated by this node.

The traffic distribution shown above in Table 13 may now be applied to the peak hour traffic volumes to exhibit the number of peak hour trips to and from each direction of the external road network as shown below.

TRIP ORIGIN /	LAND USE											
END	Residential				Resort				Commercial / Office			
	AM		PM		AM		PM		AM		PM	
	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
To / from South via N2/P228	484	1452	1452	484	179	183	277	272	209	166	103	146
To / from Umhlali via P474, P330	16	48	48	16	5	5	8	8	105	83	51	73
To / from Salt Rock via P330	24	73	73	24	8	8	12	12	73	58	36	51
To / from North via N2	145	436	436	145	31	31	47	47	52	42	26	36
To / from west via P228	16	48	48	16	20	21	32	31	84	66	41	58
Total	686	2057	2057	686	243	248	375	369	523	416	257	365

Table 14: Trip distribution in traffic volumes Tinley Manor South Banks Development

4.7 Integrated Development Planning & Public Transport Network

The investigation of the impact of traffic generated by Tinley Manor South Banks on the external road network requires comprehensive understanding and integration of existing and planned future major developments that generate large volumes of traffic. It is obvious that these large developments will have a significant impact on the local and surrounding road network.

Seaton Delaval (formerly Sheffield Beach) is planned on the east side of the N2 adjacent to Tinley Manor South Banks. West of the N2 are the planned developments of Inkwazi and Palm Lakes. The Traffic Impact Assessments of these developments were used to extract the trip generation and trip distribution rates respectively, which are summarised later in this chapter. The traffic generated from these developments was then added to the traffic generated by Tinley Manor South Banks and the road network analysed. (to follow further in the report)

The "mini town" nature of these developments shows a similar traffic movement pattern. The following can be noted:

- A high percentage of external trips are daily commuter trips southbound on the N2 towards eThekwini, hence tidal flow out in the AM peak hour and back in the PM peak hour.
- A high percentage of all trips are internal trips, possibly not by vehicle, for people who live and work in the development.
- The remaining small percentage of all trips is to and from KwaDukuza in the north as well as to and from neighbouring beach towns of Ballito and Salt Rock.

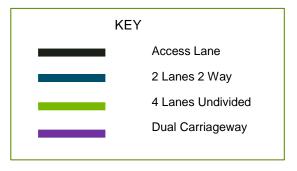
It is this distinct trend of large volumes of traffic commuting daily to and from eThekwini that motivates a substantial upgrade to the public transport network of the area. It is likely that the Ilembe Municipality will develop something along the lines of the Integrated Rapid Public Transport Network (IRPTN) in the north to cater for these large "mini-town" developments.

It is hence predicted that the traffic generated by these developments will decrease as an increased number of middle to upper income households use public transport for daily commuter trips. This reduction can also be applied to local trips generated by these developments as a comprehensive public transport network upgrade is predicted to be in order. Thus all external trips generated by proposed major developments are estimated to be decreased by 10 percent to show a realistic traffic generation model.

The following table shows the total volumes of traffic generated by Tinley Manor South Banks Development after a reduction of external trips by 10 percent due to the upgrade of the local and external public transport network.

	TRIP ORIGIN / END	AM		РМ		
1	TRIP ORIGIN / END	IN	OUT	IN	OUT	
	To / from South via N2/P228	785	1621	1648	812	
	To / from Umhlali via P474, P330	113	123	97	87	
	To / from Salt Rock via P330	95	125	108	78	
	To / from North via N2	205	458	458	205	
	To / from west via P228	108	122	109	95	

Table 15: Total traffic volumes to and from Tinley Manor South Banks onto external network

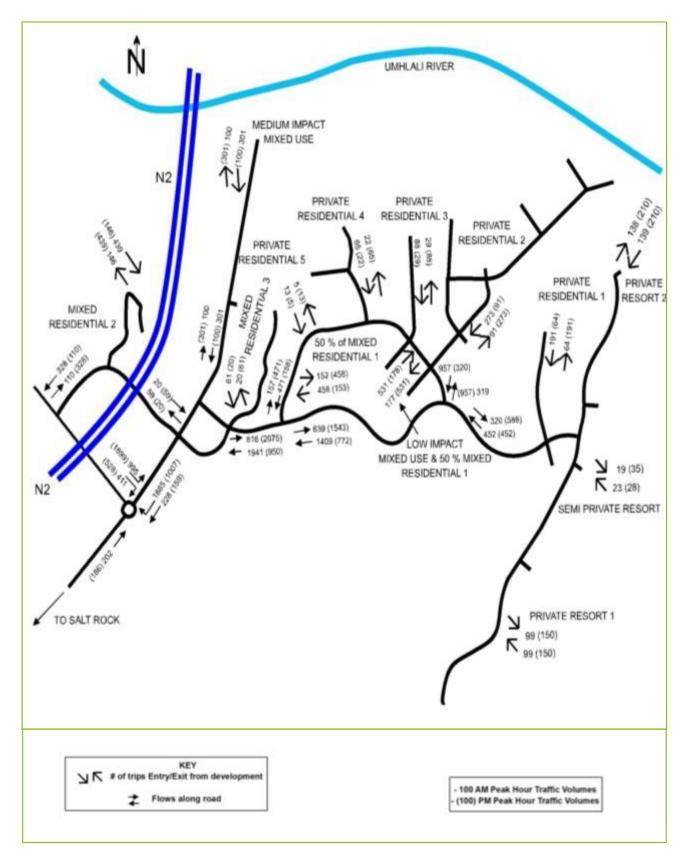

4.8 Internal Road Network

The internal road layout of the development was planned in conjunction with the type of land use, volumes of traffic and visual appeal aspects. Traffic generated by each land use within the development was calculated and then distributed onto the proposed internal layout. The traffic produced by each land use was superimposed onto the feeder roads within the development. This was then used to depict the total and hence highest volumes of traffic at the access point of the development. These volumes of traffic provided the number of lanes and road reserve widths required to cater for the traffic generated within the development. Shown below are the road categories within the proposed development.

4.8.1 Internal Road Categories

Figure 9: Tinley Manor South Banks Road Categories

4.8.2 Internal Road Descriptions


The table below shows the road category, road reserve widths, road verge elements and capacity of these roads within the Tinley Manor South Banks Development.

Type of road	Road R eserve	Elements		Reference	Capacity	Comments
Dual c/way 4 lanes (Two lanes in each direction with centre median)	28 m	4 x 3.4 lanes 2m median 2x6.2m verges <u>This consists of:</u> (2x1.5m s/walks= 3m with drain pipes & manholes underneath) (2x3m underground services =6 m) (3.4m widening allowance for right turn		UTG 1- UTG 1- UTG 1-	3600 passenger car units in both directions. (not each direction)	Allowance for right turn lane
4-lane undivided (Two lanes in each direction with NO centre median)	22 m	4 x 3.2m lanes 2x4.5m verges <u>This consists of:</u> (2x1.5m s/walks= 3m with drain pipes & manholes underneath) (2x3m underground services =6 m)	= 12.8m = 9.0m	UTG 5 UTG 5	2400 passenger car units in both directions. (not each direction)	Special treatment needed for right turns.
2-lane, 2-way (One lane in each direction with NO centre median)	16 m	2 x 3.1 lanes 2x4.5m verges <u>This consists of:</u> (2x1.5m s/walks with drain pipes & man underneath = 3m) (2x3m underground services =6 m)	= 6.2m = 9.0m holes	UTG 5 UTG 5	700 passenger car units in both directions. (not each direction)	No right turn lane
Access lane (One narrow residential lane in each direction)	13 m	2 x 2.8m lanes 2x3.5m verges <u>This consists of:</u> (2x1.5m s/walks with drain pipes & man underneath = 3m) (2x2m underground services =4 m)	= 5.6m = 7.0m holes	UTG 7 UTG 7	350 passenger car units in both directions. (not each direction)	No right turn lane

Figure 10: Internal Road Descriptions

4.8.3 Traffic Volumes on internal

The volumes of traffic generated by the Tinley Manor South Banks Development on the internal road network are shown below.

4.9 Seaton Delaval

Data extracted and summarised from the "Proposed Seaton Delaval development near Sheffield beach, KZN" traffic impact assessment produced by BCP Engineers in October 2007 is shown below. The information listed in this section will be used as reference for this document and also to superimpose the traffic produced by Seaton Delaval onto the traffic generated by Tinley Manor South Banks.

4.9.1 **Proposed Development:**

• Residential Estate:

938 Units

Hotel & Conference facilities:Tourist/Convenience centre:

200 Rooms & 50 Delegates \pm 500m² GLA

4.9.2 Development Access

The main access to the development is via the proposed roundabout intersection on a realigned portion of P228 with the various legs of the intersection as follows:

- South approach: Realigned P228
- East approach: Proposed residential development
- North approach: Hotel, conference centre, tourist centre and Tinley Manor South Banks
- West approach: P 228 / New proposed interchange access

4.9.3 Trip generation & distribution

1		-						
Land Use		Units / GLA	Gen. Rate	Split	AM Pe	ak	PM Pea	ak
					IN	OUT	IN	OUT
	Residential	938 units	0.75	25:75	176	528	528	176
	Hotel	200 rooms	0.7	55:45	77	63	63	77
	Conference	50 seats	0.7	100:0	35	0	0	35
	Tourist	500m ²	Not	50:50	30	30	50	50
	Centre		available					
	Total				318	621	641	338

Table 16: Seaton Delaval trip generation

A 10 % reduction in all trips generated is applied due to public transport improvements. The following table shows the total traffic volumes generated by Seaton Delaval onto the external road network.

TRIP ORIGIN / END	A	М	РМ		
	IN	OUT	IN	OUT	
To / from South via N2	185	376	379	188	
To / from Umhlali via P474, P330	27	55	55	28	
To / from Salt Rock via P330	29	56	58	30	
To / from North via N2	31	59	62	35	
To / from west via P228	4	4	7	7	
To / from Brettenwood and Zululami	3	3	5	5	

Table 17: Seaton Delaval trip distributior	Table 17:	Seaton	Delaval	trip	distribution
--	-----------	--------	---------	------	--------------

4.10 Palm Lakes

Data extracted and summarised from the "Proposed Multi–Node Commercial and Residential Development – Palm Lakes" traffic impact assessment produced by MMC Engineers in 2005 is shown below:

2900 Units

4.10.1 **Proposed Development:**

- Palm Lakes Residential Estate:
- Royal Palm Corporate Park:
- Forest Office Park:

900 units & 289 300 m² ± 155 375m² GLA

4.10.2 Development Access

The majority of the development is on the west side of the N2. This consists of the residential estate and the corporate park. The east side consists of the forest office park. Access for the office park from the N2 will be via the diamond interchange with access from the P467 east. The western side of the N2 which consists of the corporate park and the residential estate will use this interchange from the west. A portion of the western traffic will also utilise the new proposed diamond interchange via the P228.

4.10.3 Trip generation & distribution

Area	Land use	Units/ GLA	Trip Generation
Palm Lakes Residential Estate	Middle Income Residential	2900 units	0.55 veh/h per unit
Royal Palm Corporate Park	Middle Income residential	900 units	0.55 veh/h per unit
	Wholesale, light industry	289 300m ²	1.16 veh/h per 100m ²
Forest office Park	Office	105 875m ²	1.73 veh/h per 100m ²
	Multi-use centre	49 500m ²	2.25 veh/h per 100m ²
Total			

Table 18: Trip generation for Palm Lakes

AREA	DIRECTION	ROUTE	AM PEAK HOUR		PM PEAK HOUR	
			IN	OUT	IN	OUT
	NORTH	MR467 - Interchange – N2	132	502	478	140
Palm Lakes Residential Estate	SOUTH	MR467 –Interchange – N2	168	395	419	160
Paini Lakes Residential Estate	EAST	MR467 through the N2 Interchange	20	60	60	20
	WEST	MR467	80	239	239	80
	NORTH	MR467 - Interchange – N2	836	536	510	886
Devel Delve Comparete Devis	SOUTH	MR467 –Interchange – N2	1063	421	447	1013
Royal Palm Corporate Park	EAST	MR467 through the N2 Interchange	127	64	64	127
	WEST	MR467	506	255	255	506
	NORTH	MR467 - Interchange – N2	700	213	182	816
Forest Office Park	SOUTH	MR467 –Interchange – N2	816	182	213	700
	EAST	MR467	117	30	30	117
	WEST	MR467 through the N2 interchange	466	122	122	466

Table 19: Trip distribution and traffic volumes for Palm Lakes

The trip distribution shown above for Palm Lakes does not take into account the proposed new diamond interchange. A revised trip distribution table redistributing traffic generated by Palm Lakes onto the new diamond interchange is shown below. A 10 % reduction in all trips generated is applied due to public transport improvements. The following table shows the total traffic volumes generated by Palm Lakes onto the external road network.

		AM PEAK HOUR		PM PEAK H	OUR
		In	Out	In	Out
SOUTH	P228 –Interchange – N2	147	72	78	135
EAST	P228 through the N2 Interchange	19	11	11	19

Table 20: Revised Palm Lakes traffic distribution

4.11 Inkwazi

Data extracted and summarised from the "Traffic Impact Assessment for the Proposed Inkwazi Estate Mixed Use Development" produced by Africon in January 2009 is shown below. The information listed in this section will be used as reference for this document and also to superimpose the traffic produced by Inkwazi onto the traffic generated by Tinley Manor South Banks.

4.11.1 **Proposed Development:**

- School •
- Worship Site •
- High Income Residential Estate:
- Middle Income Residential Estate:
- Commercial site:

- 250 Units 1 250 Units
- $\pm 7500m^2$ GLA Clubhouse & activity node for residents
- 4.11.2 Development Access

Two access points are planned to serve the proposed mixed development, 350m apart as follows:

- Primary access: MR 228 •
- **MR 228** Secondary access:

4.11.3 **Trip generation & distribution**

Land Use	Units / GLA	Gen. Rate	AM Pe	ak	PM Pea	ak
			IN	OUT	IN	OUT
Commercial	7490 m ²	4.54 veh/h/100m ²	17	17	170	170
High Income Residential	250	1.28 veh/h/unit	80	239	239	80
Middle Income Residential	1250	0.93 veh/h/unit	291	872	872	291
Primary school	600	0.45 veh/h/unit	135	135	-	-
Total			523	1263	1281	540

DIRECTION	DOUTE	ΑΜ ΡΕΑΚ		ΡΜ ΡΕΑΚ	
DIRECTION	ROUTE	% In	% Out	% In	% Out
NORTH	MR228 – MR467	5	5	5	5
	MR228 – MR467 – MR2	20	20	20	20
	MR228 – N2	15	15	15	15
COLITI	MR228 – N2	30	30	30	30
SOUTH	MR228 – MR467 – MR2	15	15	15	15
EAST	MR228 – MR330	10	10	10	10
WEST	MR228 – MR330	5	5	5	5

Table 22: Trip distribution in percentages - Inkwazi

A 10 % reduction in all trips generated is applied due to public transport improvements. The following table shows the total traffic volumes generated by Inkwazi onto the external road network.

DIRECTION	ROUTE	AM PEA	K HOUR	PM PEAK HOUR		
		In	Out	In	Out	
NORTH	MR228 – MR467	24	57	58	24	
	MR228 – MR467 – MR2	94	227	231	97	
	MR228 – N2	71	171	173	73	
SOUTH	MR228 – N2	141	341	346	146	
30011	MR228 – MR467 – MR2	71	171	173	73	
EAST	MR228 – MR330	47	114	115	49	
WEST	MR228 – MR330	24	57	58	24	

Table 23: Trip distribution Inkwazi- Total traffic volumes

4.12 Layout of Tinley Manor South Banks Generated Traffic

The traffic generated by the Proposed Tinley Manor South Banks development onto the external road network is shown below.

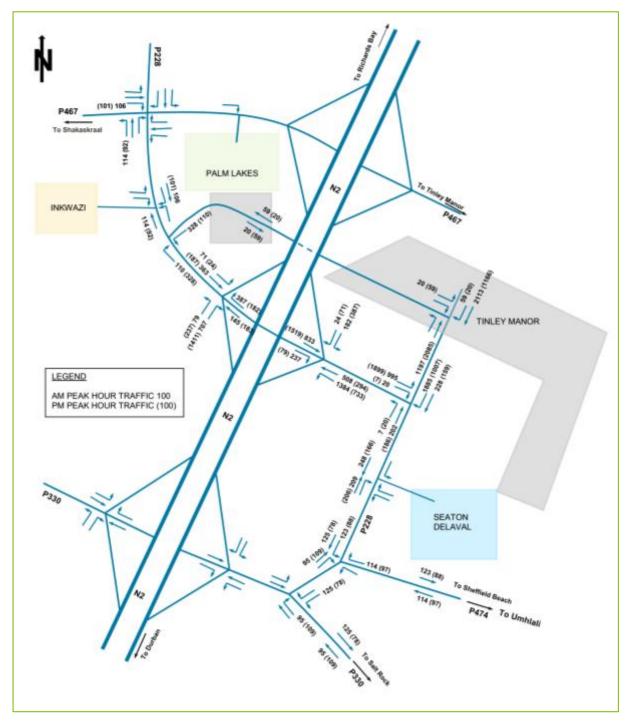


Figure 11: Traffic generated by the proposed Tinley Manor South Banks development

4.13 Layout of Traffic Generated by All New Major Proposed Developments

The traffic generated by the major proposed developments of Tinley Manor South Banks, Seaton Delaval, Inkwazi and Palm Lakes onto the external road network are shown below.

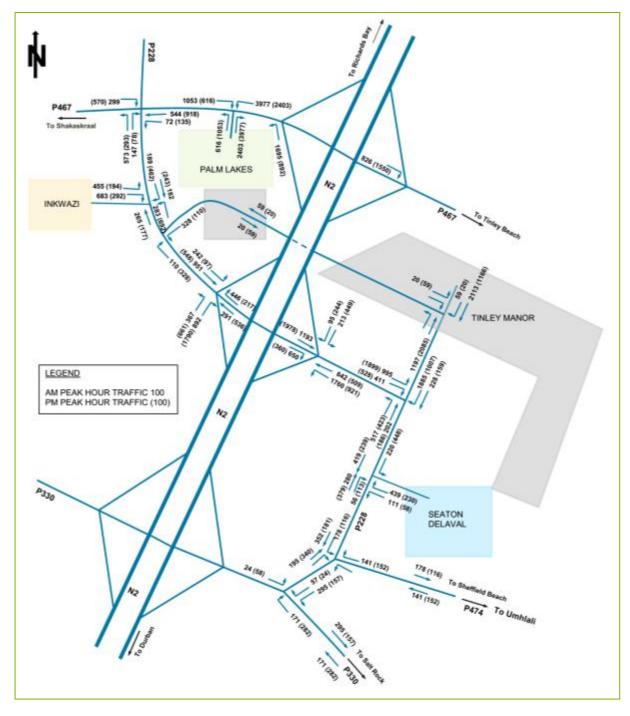


Figure 12: Traffic generated by all new major proposed developments

4.14 Traffic Generated by All Developments & Existing Background Traffic

The traffic generated by the developments of Tinley Manor South Banks, Seaton Delaval, Inkwazi and Palm Lakes onto the external road network added to the existing background traffic, are shown below.

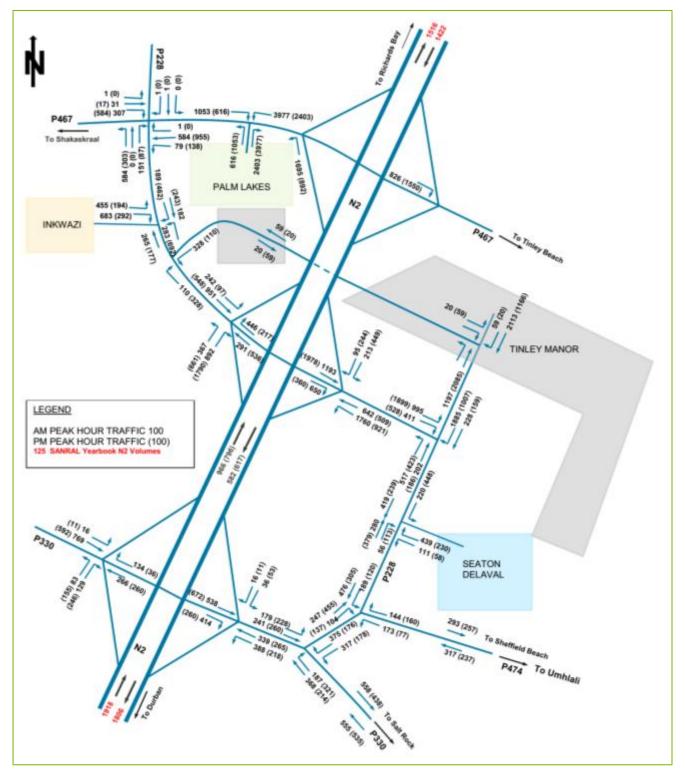


Figure 13: Existing background + proposed developments generated traffic

5. Impact on the External Road Network

This chapter analyses the impact of the traffic generated by Tinley Manor South Banks and all major local developments on the adjacent affected road network.

5.1 Analysis of Intersections – Traffic generated by proposed developments & background traffic

5.1.1 P330/P474 intersection – Traffic Signals

This intersection is tested based on the proposed upgrade from section 3.4.5 of this report.

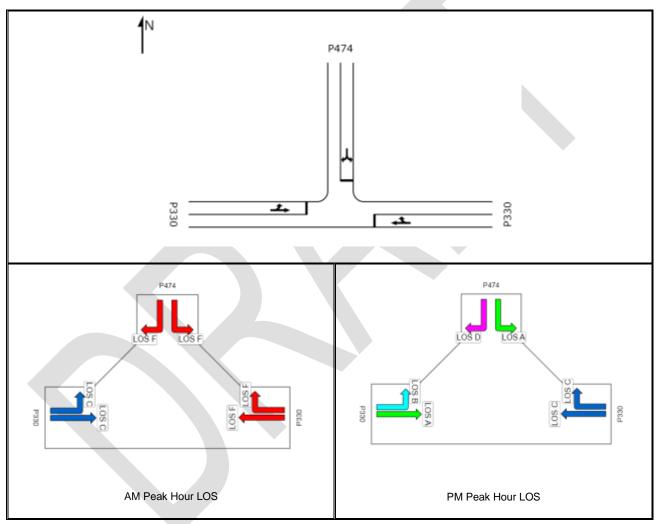


Table 24: Analysis of P330/P474 intersection with background + development traffic

It can be seen that this intersection has reached capacity with the additional trips generated by the proposed developments in the AM peak hour. The queue lengths have increased significantly and are a result of the traffic generated primarily by Tinley Manor and Seaton Delaval. An upgrade of this intersection is recommended with a left slip lane with a 20m taper for the north approach going left. This will now be tested.

5.1.2 P330/P474 intersection – Traffic Signals + Slip Lane

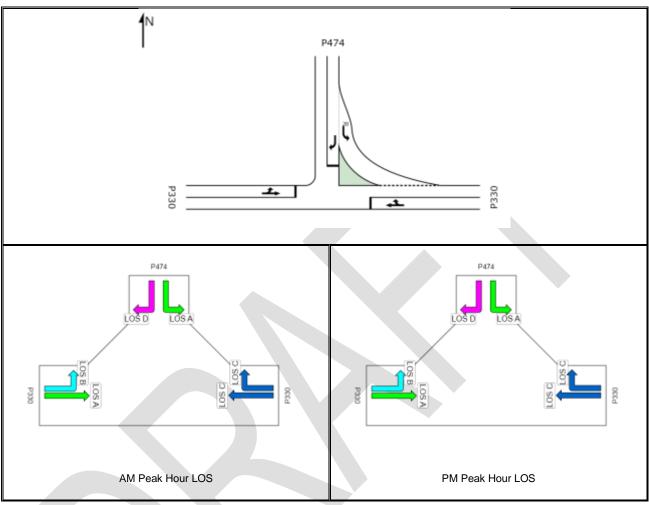


Table 25: Proposed upgrade analysis of P330/P474 intersection with background + development traffic

It can be seen that this intersection now has acceptable levels of service for all movements. The level of service D for the right turn movement is approaching capacity. It exhibits a queue length of 48.5m. It may be that the growth of background traffic over the 10 year analysis period causes this intersection to fail. Recommendations to this will be made in the next chapter.

5.1.3 P474/P228 intersection

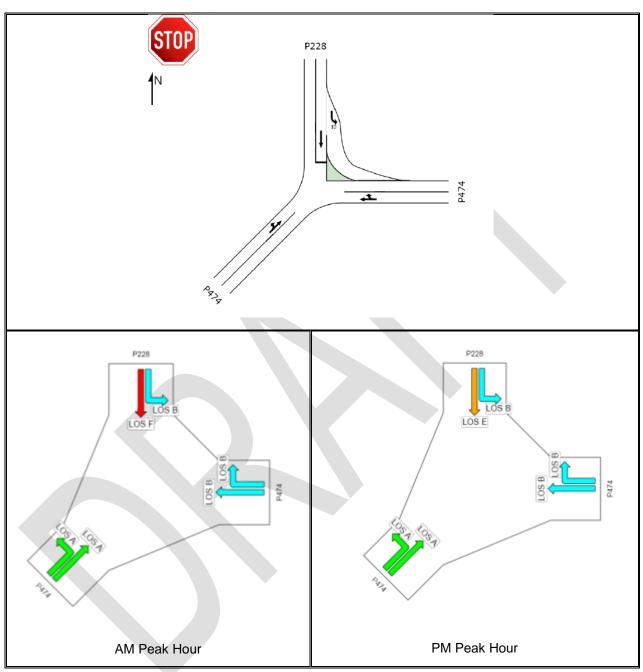


Table 26: Analysis of P228/P474 intersection with background + development traffic

It can be seen that the north approach stop movement exhibits a level of service F with a queue length of 791m and average delay 370 seconds. The existing operating levels as analysed in section 3.4.6 exhibits a LOS B for this movement. This increase is a result of the traffic generated primarily by Tinley Manor & Seaton Delaval. Upgrading of this intersection is recommended. Investigation will be carried out in the 10 year analysis.

5.1.4 P288/P467 intersection

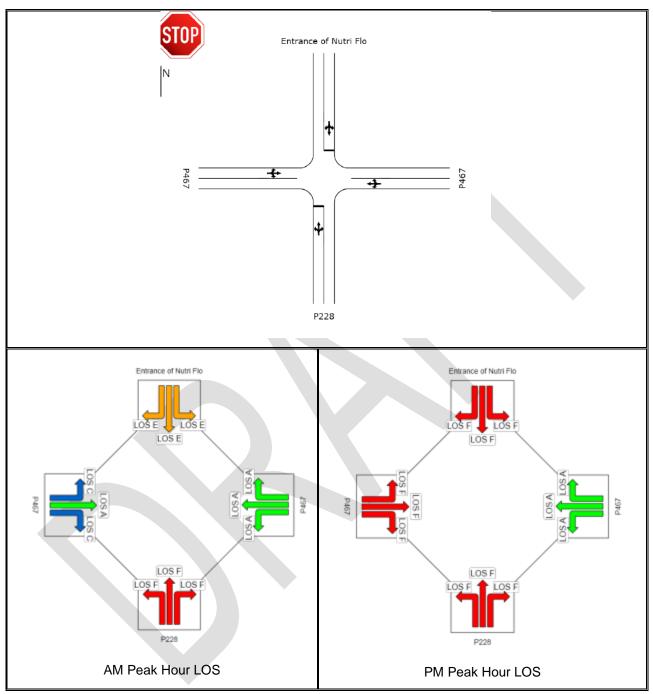


Table 27: Analysis of P228/P467 intersection with background + development traffic

Levels of service F are obtained for several movements throughout. The primary contributor of these high traffic volumes are the developments of Inkwazi and Palm Lakes. A small proportion of traffic at this intersection is generated by Tinley Manor South Banks development. The upgrade of this intersection will be investigated in the next chapter.

5.2 Salt Rock Interchange & Tinley Beach (Palm Lakes) Interchanges

This section refers to the following intersections that were previously analysed using the existing background traffic in section 3.4 of this report:

- P330 / N2 off Ramp Western (AM & PM)
- P330 / N2 on Ramp Eastern (AM & PM)
- P467 / N2 off Ramp Western (AM & PM)
- P467 / N2 on Ramp Eastern (AM & PM)

Long term traffic planning on the above mentioned intersections is to be carried out as a separate exercise and does not fall under the scope of investigation of this report. The traffic generated by Tinley Manor that accesses these intersections will be negligible and will be minimal in affecting the operations of these intersections.

6. Long Term Background Traffic Growth Analysis

6.1 Traffic Growth & Assessment Years

The Department of Transport "Manual for Traffic Impact Studies" was used to calculate the Assessment Years for the Traffic Impact Study of Tinley Manor South Banks developments. Tinley Manor generates more than 200 two way trips in the peak hour. This requires an assessment period of 10 Years. The following table shows a summary of all major developments assessment years.

Development	Assessment Years
Tinley Manor South Banks	10
Seaton Delaval	5
Palm Lakes	10
Inkwazi	5

Table 28: Summary of assessment years for major developments

Therefore an assessment period of 10 years was chosen for the analysis of all major local developments. It was considered that no additional background traffic would apply to the developments of Seaton Delaval and Inkwazi as they would be operating at full traffic generation 5 years from the base year.

6.2 Traffic Generated by All Developments & 10 Year Background Traffic

The traffic generated by Tinley Manor South Banks, Seaton Delaval, Palm Lakes and Inkwazi, as well as the background traffic grown over 10 years at a growth rate of 2.5 percent is shown below.

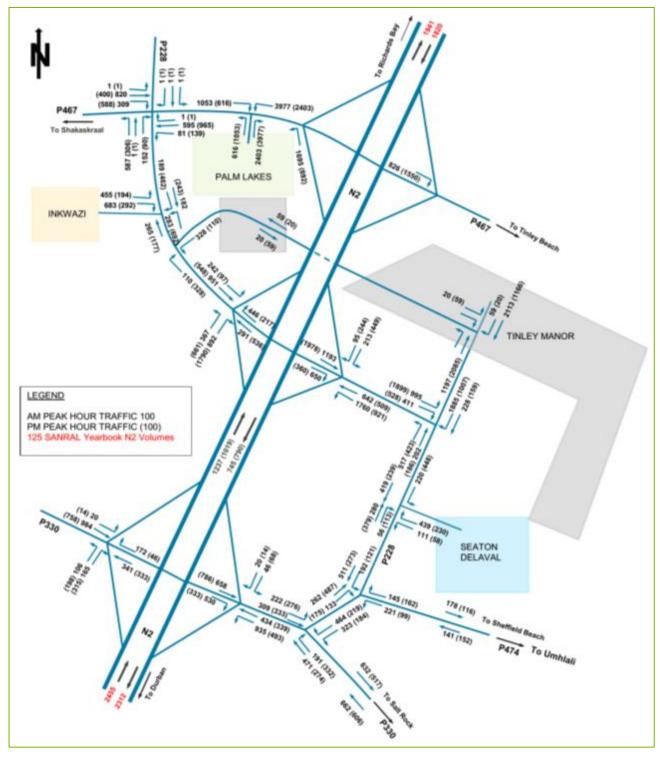


Figure 14: Traffic generated by all developments & 10 year background traffic growth

6.3 Analysis of Intersections – Traffic generated by proposed developments & 10 year background traffic growth

6.3.1 P330/P474 intersection – Traffic Signals + Slip Lane

This intersection is tested based on the proposed upgrade from section 5.1.2 of this report.

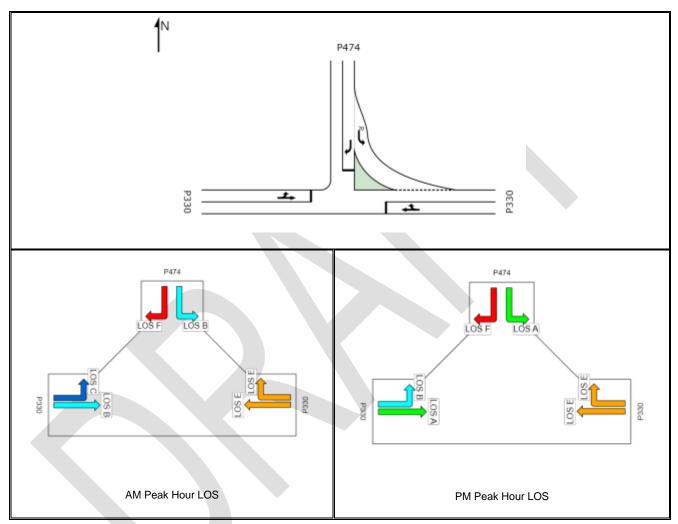


Table 29: Proposed upgrade analysis of P330/P474 intersection with 10 year background traffic + development traffic

The level of service F for the right turn movement is saturated and the through flow from the east is approaching saturation. The background traffic growth over the 10 year analysis period causes this intersection to fail based on the upgrade suggested in 5.1.2. A further upgrade of this intersection is hence recommended with an additional lane westbound lane in the vicinity of the intersection. This will now be tested.

6.3.2 P330/P474 intersection – Traffic Signals + Slip Lane + extra westbound lane

The intersection will now be tested with a proposed additional lane in the westbound direction.

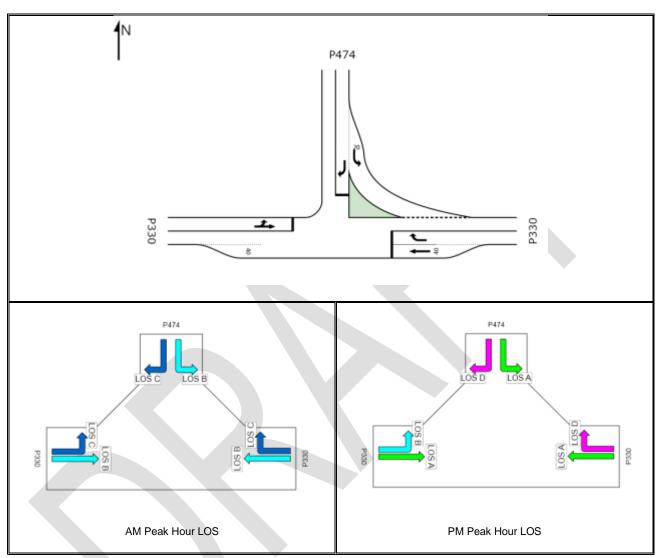


Table 30: Proposed upgrade analysis of P330/P474 intersection with 10 year background traffic + development traffic

It can be seen that this intersection now has acceptable levels of service for all movements. Hence this layout is a feasible solution.

6.3.3 P474/P228 intersection + Traffic Signalisation

It was shown in section 5.1.3 that the southbound approach on the P228 exhibits a level of service F for that movement. This intersection will now be tested with the 10 year background traffic and traffic signalisation to achieve acceptable levels of service for all movements.

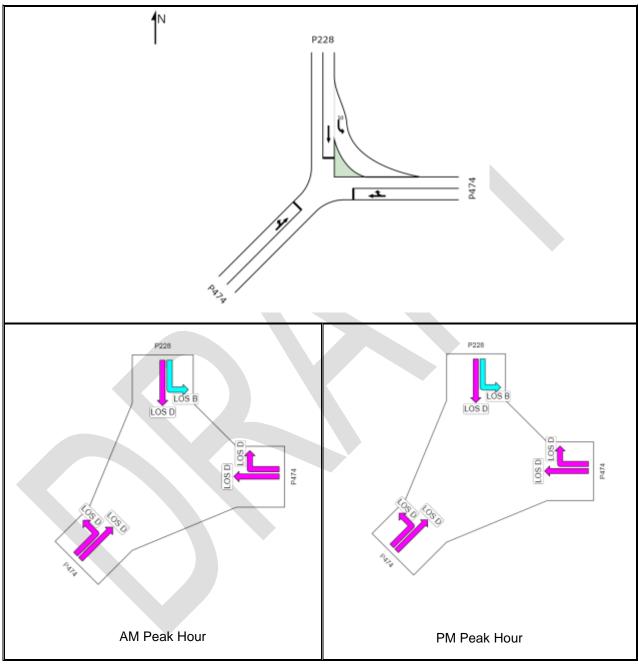


Table 31: Analysis of P228/P474 intersection with 10 year background traffic + development traffic

Analysis has shown that the most feasible solution to achieve acceptable levels of service at this intersection is through signalisation. It can be seen above that all movements now show acceptable levels of service.

The analysis of the existing intersection configuration in section 5.1.4 resulted in saturation and levels of service F throughout. This intersection will now be tested with traffic signals as below.

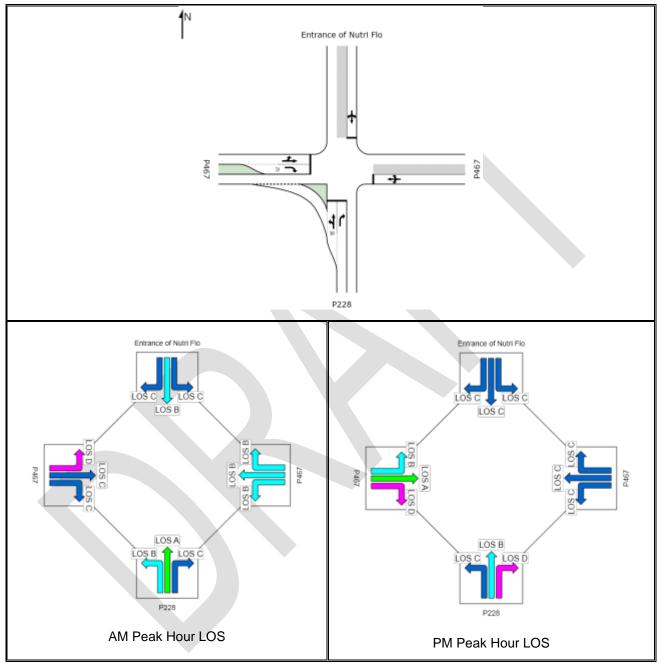
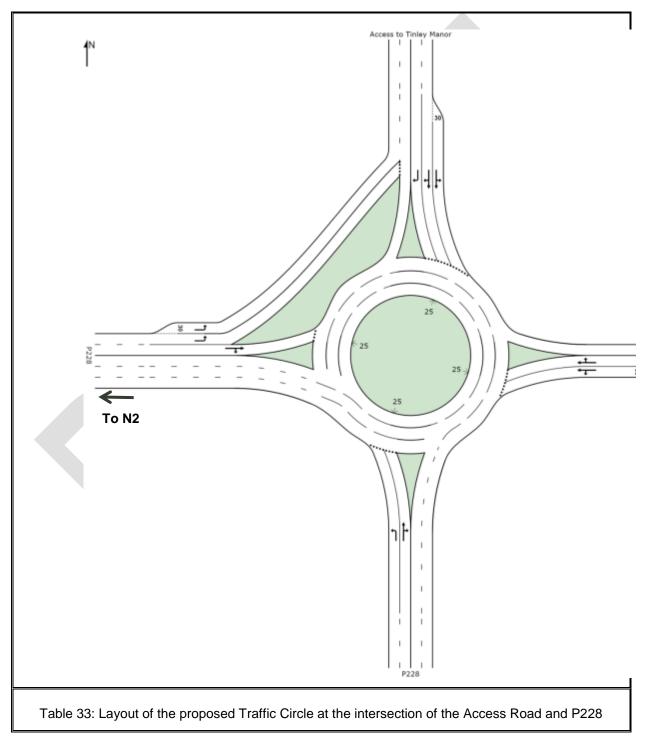



Table 32: Analysis of P228/P467 intersection with 10 year background traffic + development traffic

The primary contributors of traffic at this intersection are the developments of Inkwazi and Palm Lakes. A small proportion of traffic at this intersection is contributed by Tinley Manor South Banks development. The above configuration with traffic signals is deemed acceptable on a planning level; however careful investigation needs to be carried out on the traffic volumes generated by Palm Lakes and Inkwazi along with their distributions and hence establish the final configuration of this intersection before implementation of the upgrade.

6.4 Proposed Intersection of P228/Access Road to Tinley Manor

Figure 14 above shows the traffic that is predicted to affect the intersection of the proposed Access Road to Tinley Manor South Banks and P228. It has since been established that the primary access point to Seaton Delaval is proposed to be at this intersection as well. Seaton Delaval however will consist of secondary access points along the P228. The traffic as shown to access Seaton Delaval in figure 14 has been adjusted accordingly.

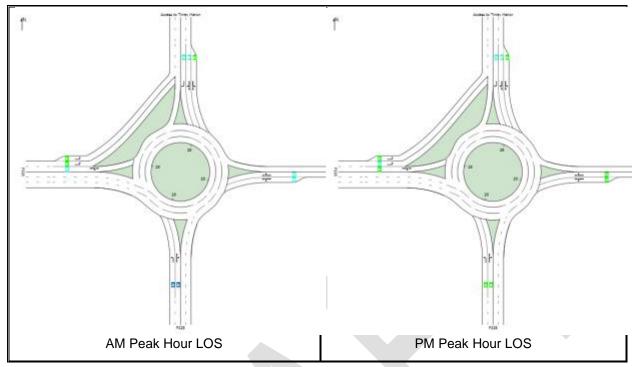


Table 34: Analysis of intersection of P228 and Access Road to Tinley Manor South Banks

The analysis of the traffic circle is shown above and it can be seen above that all movements are at acceptable levels of service.

6.5 Salt Rock Interchange & Tinley Beach (Palm Lakes) Interchanges

This section refers to the following intersections that were previously analysed using the existing background traffic in section 3.4 of this report:

- P330 / N2 off Ramp Western (AM & PM)
- P330 / N2 on Ramp Eastern (AM & PM)
- P467 / N2 off Ramp Western (AM & PM)
- P467 / N2 on Ramp Eastern (AM & PM)

Long term traffic planning on the above mentioned intersections is to be carried out as a separate exercise and does not fall under the scope of investigation of this report. The traffic generated by Tinley Manor that accesses these intersections will be negligible and will be minimal in affecting the operations of these intersections.

6.6 Comments & Recommendations

- The 10 year background traffic growth does not yield significantly high volumes of traffic on most intersections as the area currently experiences low traffic volumes. The growth of these low volumes over the assessment period of the developments does not yield large traffic volume increases.
- The majority of the volume of additional traffic is generated by the proposed new developments of Tinley Manor South Banks, Seaton Delaval, Palm Lakes and Inkwazi. The

traffic generated by these developments requires several intersections to be upgraded to accommodate the flow. These upgrades were recommended in this chapter.

- The traffic volumes are primarily witnessed in tidal flow, i.e. outgoing trips from the residential developments in the AM peak hour and inbound trips towards the residential developments in the PM peak hour.
- It is recommended that the intersections on the west side of the N2 as well as the interchanges listed in 6.4 above be addressed as a separate exercise. The large volumes of traffic generated by Palm Lakes and Inkwazi need to be carefully examined along with their distributions and then re applied to these intersections. Furthermore the scope of this report does not sufficiently cover the road network and hence traffic conditions west of the Salt Rock interchange to comprehensively analyse it.
- The majority of the traffic generated by Tinley Manor is applied to the proposed Sheffield Beach interchange and hence a comprehensive traffic investigation needs to be carried out on a planning level. This will be done in the next chapter of this report.

7. Planned Diamond Interchange

7.1 Terms of Reference

As part of the DFA process for the development of Sheffield Manor (now Seaton Delaval) a Traffic Impact Assessment was carried out by Iliso Consulting in July 2004. The initial assessment recommended that an additional interchange on the N2 was required to service the anticipated traffic generated from Sheffield Manor and the other future developments in the area. As part of SANRAL's "Process for new interchange application" Iliso Consulting prepared a preliminary planning report which was included in the DFA report for the Sheffield Manor Development and approved in principal by SANRAL.

The principle of an additional interchange at km 14 on the N2 has been firmly established and this will clearly be to the benefit of the Tinley Manor South Banks development along with Seaton Delaval as well as other smaller developments in the locality.

It is noted at this stage that the Seaton Delaval development has faltered due to funding issues but this does not preclude the development of that land as upper income housing at some stage in the future, nor the need for the interchange.

Shown below in figure 15 is the Diamond Interchange that was proposed by UWP for Seaton Delaval as a short to medium term solution:

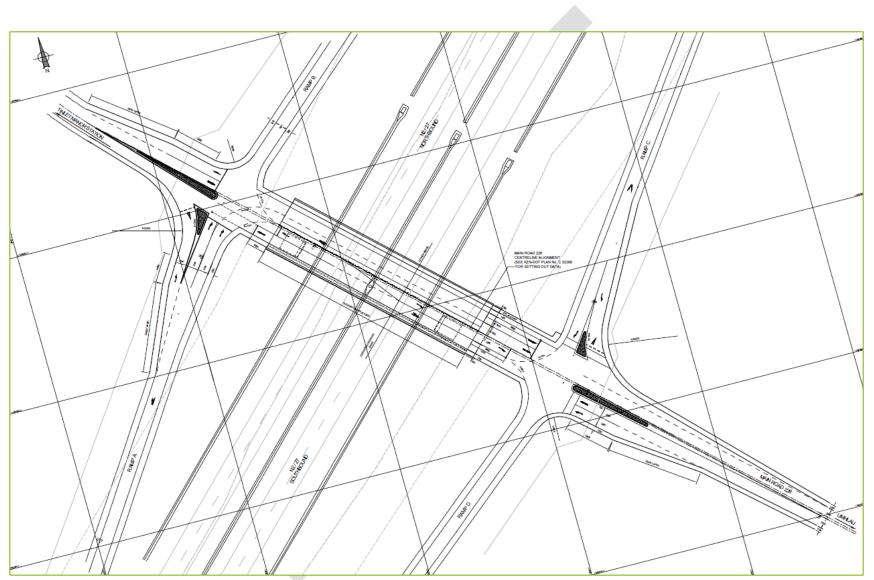
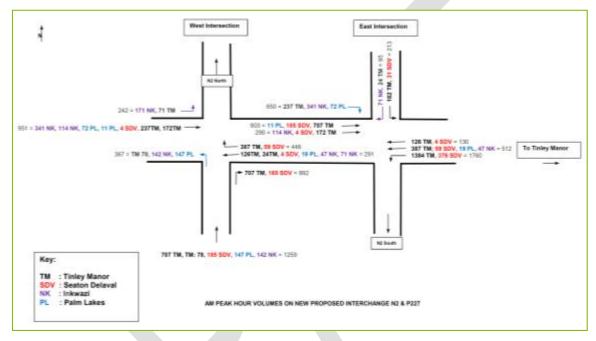



Figure 15: Layout of planned diamond interchange at km 14 on N2/27

7.2 Traffic Volumes on Proposed Sheffield Beach Interchange

Section 4 of this report provided the generation and distribution of traffic from the developments of Tinley Manor South Banks, Seaton Delaval, Palm Lakes and Inkwazi. Shown below are the peak hour traffic volumes generated by these developments on the proposed Sheffield Beach interchange. Note that no background traffic has been included as this is a new interchange and a negligible amount of background traffic is predicted.

7.2.1 Proposed new diamond interchange (P228) traffic volumes – AM

Figure 16: Proposed new interchange traffic volumes - AM

7.2.2 Proposed new diamond interchange traffic volumes – PM

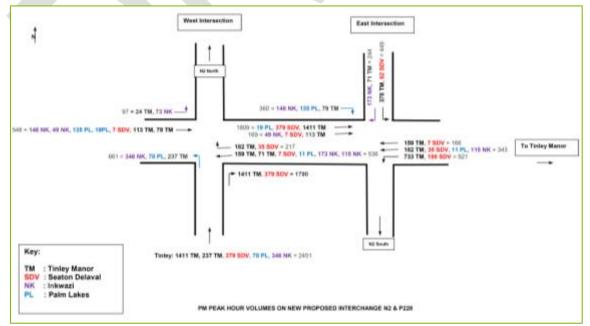
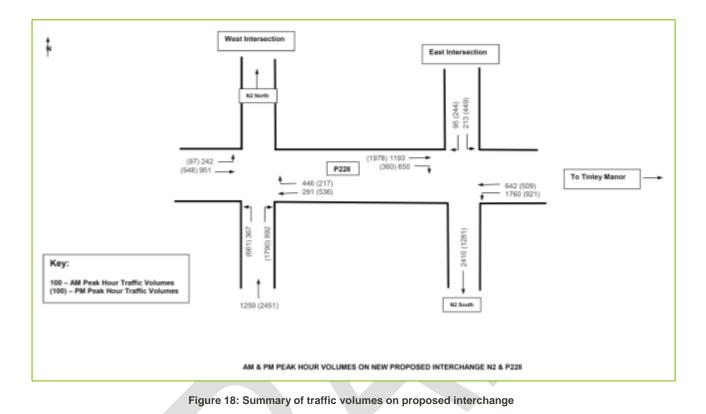
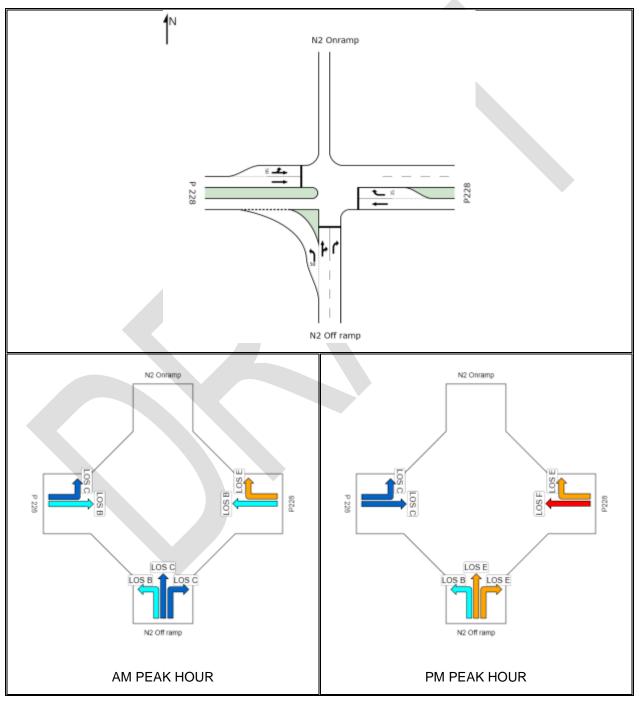



Figure 17: Proposed new interchange traffic volumes – PM

The summary of the generated traffic volumes at the proposed new interchange is shown below.



7.3 Analysis of N2/P228 Interchange Proposed by Seaton Delaval

The traffic volumes generated by Tinley Manor South Banks, Seaton Delaval, Palm Lakes and Inkwazi as shown in figure 18 above will now be tested on the layout of the new interchange proposal by the developers of the proposed Seaton Delaval development as in figure 15 above.

7.3.1 Proposed N2/P228 Interchange West – Traffic Signals

The analysis of the west intersection of the proposed diamond interchange is shown below.

7.3.2 Proposed N2/P228 Interchange East – Traffic Signals

The analysis of the east intersection of the proposed diamond interchange is shown below.

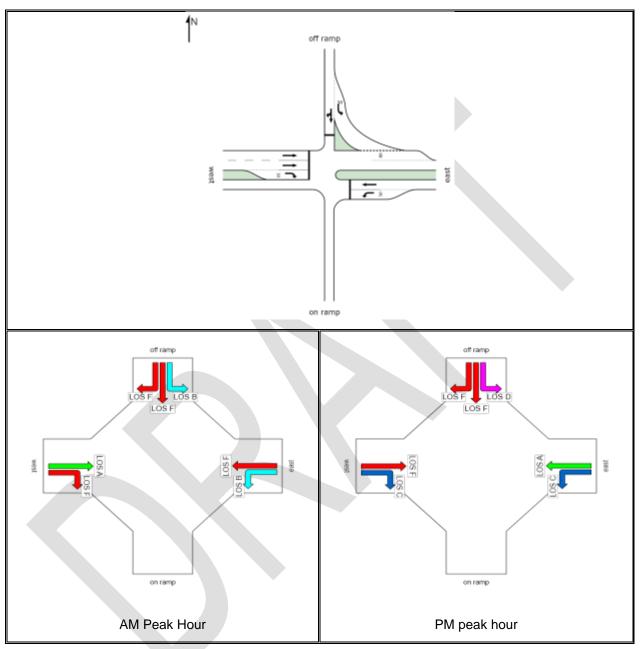


Table 36: Analysis of diamond interchange proposed by Seaton Delaval - East intersection

7.3.3 Comments on the analysis of the proposed diamond interchange

As can be seen from the analysis in 7.3.1 and 7.3.2 above, both east and west intersections exhibit levels of service F. These movements have reached capacity and are deemed as not acceptable. It can be seen that the east intersection is the governing intersection as it shows the poorest traffic operational conditions. An alternative configuration for the interchange is therefore to be investigated to deal with these high volumes of traffic. This will be now be analysed by testing a Diverging Diamond Interchange. The layout of a typical Diverging Diamond Interchange is shown in figure 19 below.

Figure 19: Diverging Diamond Interchange at N2 – KwaMashu designed by Aurecon South Africa (Pty) Ltd

7.4 Analysis of a Diverging Diamond Interchange

A diverging diamond interchange will now be tested with the traffic generated by Tinley Manor South Banks, Seaton Delaval, Palm Lakes and Inkwazi. The traffic volumes used are from figure 18 above.

7.4.1 Proposed N2/P228 Diverging Diamond Interchange West Intersection – Traffic Signals

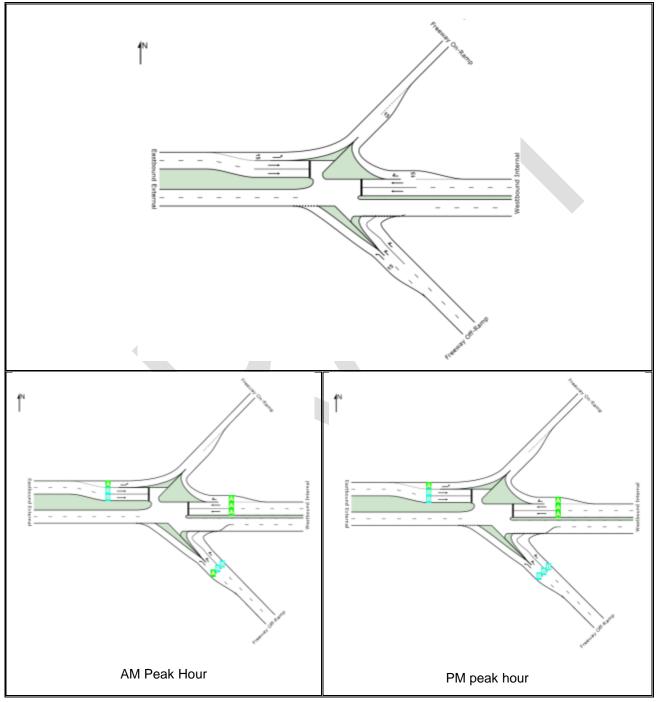
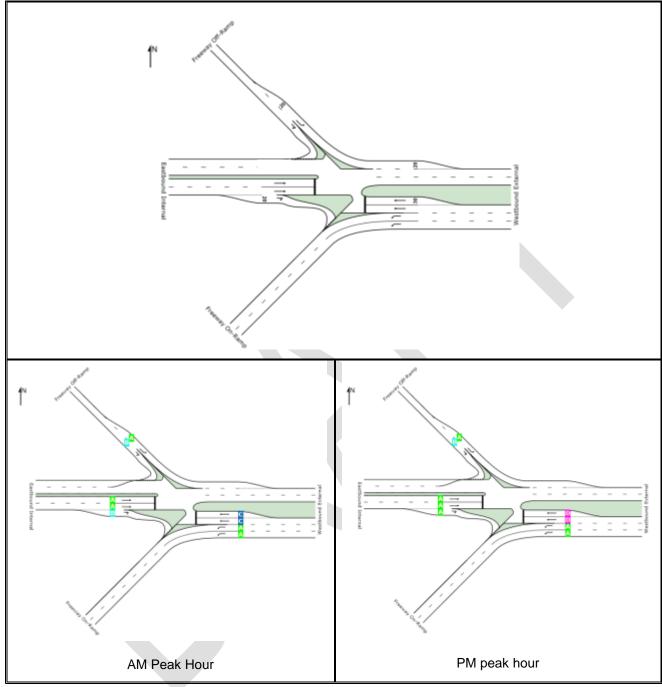



Table 37: Analysis of Diverging Diamond West Intersection

7.4.2 Proposed N2/P228 Diverging Diamond Interchange East Intersection – Traffic Signals

Table 38: Analysis of Diverging Diamond East Intersection

7.4.3 Comments on the analysis of the new proposed diverging diamond interchange

The layout of the proposed diamond intersection is such that the East and West intersections are situated on natural ground adjacent to the bridge. Furthermore it is ensured that 2 lanes in each direction are sufficient to carry the generated traffic volume over the N2. It is important to note that this layout i.e. a diverging diamond interchange operates more efficiently than a conventional diamond interchange in the event of a high volume of right turn traffic as applies in this case. Tables 35 and 36 above show that all levels of service are acceptable.

7.5 Analysis of Merge and Diverge of on ramp and off ramp to/from N2

Distances between the centreline to centreline of interchanges and length of ramps to be noted:

٠	Existing Salt Rock Interchange to Proposed Sheffield Beach Interchang	e = 2.6km
٠	Proposed Sheffield Beach Interchange Southbound on ramp	= 0.7 km
•	Salt Rock interchange southbound off ramp	= 0.7 km

• Proposed Sheffield Beach Interchange to Tinley Beach Interchange = 4.9km

Even though the distance of 2.6km is below the permissible spacing between rural interchanges, an application was made to SANRAL by UWP consulting engineers and relaxation was granted.

It has been established from the SIDRA analysis above that two southbound on ramps and two northbound off ramps will be required to facilitate the high generated traffic to/from the south.

Using the merge and diverge method of the Highway Capacity Manual (2010), Chapter 13, the following levels of service are obtained. Note that traffic generated by Palm Lakes that access the development from the Tinley Beach interchange has been added to the 10 year traffic on the N2 to achieve the following results.

- Proposed Sheffield beach Interchange double on ramp onto N2 southbound: Length of ramp & acceleration lane = 0.7km
 Length of merge lane = 0.6km
 Level of Service of merge = C
- Proposed Sheffield beach Interchange double off ramp off N2 northbound:
 - Length of ramp & deceleration lane = 0.7km
 - Length of diverge lane = 0.6km
 - Level of Service of diverge = C

8. Conclusions & Recommendations

The following conclusions can be drawn from this assessment of the likely traffic impact of the proposal to establish a residential and resort estate Tinley Manor South Banks, north of Ballito on the KwaZulu-Natal North Coast.

- The existing traffic conditions on the existing road network are satisfactory.
- The future traffic volumes on the immediately adjacent roads are dependent on proposed major developments and have been included in the analysis.
- The traffic that will be generated by the proposed Tinley Manor South Banks development will, when aggregated with the future traffic due to other major traffic generators of Seaton Delaval, Palm Lakes and Inkwazi, require upgrading of the following intersections:
 - P330/P474 upgraded as recommended in 6.3.2
 - P474/P228 upgraded as recommended in 6.3.3
 - P228/P467 upgraded as recommended in 6.3.4
 - o P228 access to Tinley Manor and Seaton Delaval upgraded as recommended in 6.4
- It is recommended that the analysis of the Salt Rock interchange be carried out as a separate exercise. The scope of this report does not adequately cover this interchange. The analysis of The Tinley Beach Interchange has been carried out in the Traffic Impact Assessment of Palm

Lakes. The traffic generated by Tinley Manor South Banks negligibly impacts on both of these interchanges.

- The analysis of the new proposed interchange has revealed the following:
 - At the full development of the surrounding area the indications are that a four lane crossroad will not be sufficient and a five lane crossroad will be required in the longer term (20+ years) IF a conventional diamond interchange is constructed.
 - The analysis of a proposed diverging diamond interchange has been carried out. The results indicate good traffic operating conditions with a four lane cross road over the N2 (2 lanes in each direction) as well as indicating capacity for background traffic growth in the long term.
 - It is therefore recommended that the geometry of this proposed diverging diamond interchange be such as indicated in tables 35 and 36.
 - It is recommended that a cost sharing agreement with adjacent landowners be entered into in funding the widened crossroad to accommodate the additional traffic over and above that of the Tinley Manor South Banks development.
- Public transport facilities are to be carefully planned at detailed design stage and implemented. The llembe Municipality is expected to expand its public transport operations in line with national policy and link to this section of the north coast and reduce traffic.

Provided the above recommendations are adopted there is no reason of a traffic engineering nature why the development should not be permitted to proceed.

APPENDIX

Existing Traffic flows – Traffic Counts

Intersection of P330 / P474

					Т	RAFF	IC SUF	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
SITE:	INTEF	RSECT)F MA	IN ROAI	D 330 .		1AIN R		474						
DATE: UNITS:	-	SIFIED		ON M	ONDAY	13 AU	GUST	2012								
	OL/ (C															
APPROACH FROM								NORT								TOTAL
NAME								N ROA		;			GHT T			
MOVEMENT TIME	С	T	EFT TU	JRN B	TOTAL	С	T	TRAIC	В	TOTAL	С	T	ALL MOVEMENTS			
06:00 - 06:15	1	0	0	0	1	0	0	0	0	0	17	0	Н 0	В 0	TOTAL 17	18
06:15 - 06:30	3	0	0	0	3	0	0	0	0	0	36	0	Ő	0	36	39
06:30 - 06:45	3	0	0	0	3	0	0	0	0	0	65	2	1	0	68	71
06:45 - 07:00	2	0	0	0	2	0	0	0	0	0	70	0	0	0	70	72
07:00 - 07:15	1	0	1	0	2	0	0	0	0	0	82	0	1	1	84	86
07:15 - 07:30	0	0	0	0	0	0	0	0	0	0	51	0	2	0	53	53
07:30 - 07:45	13	0	0	0	13	0	0	0	0	0	106	0	2	0	108	121
07:45 - 08:00	7	0	0	0	7	0	0	0	0	0	67	0	6	0	73	80
08:00 - 08:15	1	0	0	0	1	0	0	0	0	0	39	0	3	0	42	43
08:15 - 08:30 08:30 - 08:45	7 6	0	0	0	7	0	0	0	0	0	50 51	0	0	0	50 53	57 59
08:45 - 09:00	3	0	0	0	3	0	0	0	0	0	40	0	4	0	44	47
09:00 - 09:15	0	0	0	0	0	0	0	0	0	0	40	0	8	0	44	48
09:15 - 09:30	3	0	1	0	4	0	0	0	0	0	35	0	3	1	39	43
09:30 - 09:45	7	0	0	0	7	0	0	0	Ő	Ő	32	Ő	0	0	32	39
09:45 - 10:00	3	0	Ő	0	3	0	0	0	0	0	32	Õ	3	0	35	38
10:00 - 10:15	1	0	0	0	1	0	0	0	0	0	47	0	3	0	50	51
10:15 - 10:30	3	0	0	0	3	0	0	0	0	0	37	0	6	0	43	46
10:30 - 10:45	3	0	0	0	3	0	0	0	0	0	25	0	4	0	29	32
10:45 - 11:00	5	0	0	0	5	0	0	0	0	0	35	0	2	0	37	42
11:00 - 11:15	2	0	0	0	2	0	0	0	0	0	34	0	3	0	37	39
11:15 - 11:30	2	0	0	0	2	0	0	0	0	0	33	0	4	0	37	39
11:30 - 11:45	5	0	0	0	5	0	0	0	0	0	18	0	1	0	19	24
11:45 - 12:00	6	0	0	0	6	0	0	0	0	0	38	0	7	0	45	51
12:00 - 12:15	5	0	0	0	5	0	0	0	0	0	25	0	0	0	25	30
12:15 - 12:30 12:30 - 12:45	4	0	1	0	5	0	0	0	0	0	37 33	0	6 3	0	43 36	48 40
12:45 - 13:00	3	0	0	0	3	0	0	0	0	0	11	0	2	0	13	16
13:00 - 13:15	5	0	ŏ	0	5	0	0	0	0	0	33	0	2	0	35	40
13:15 - 13:30	10	0	0	0	10	0	0	0	0	0	19	0	0	0	19	29
13:30 - 13:45	2	0	0	0	2	0	0	0	0	0	24	0	7	0	31	33
13:45 - 14:00	2	0	0	0	2	0	0	0	0	0	33	0	2	0	35	37
14:00 - 14:15	5	0	0	0	5	0	0	0	0	0	26	0	4	0	30	35
14:15 - 14:30	2	0	0	0	2	0	0	0	0	0	19	0	4	0	23	25
14:30 - 14:45	2	0	0	0	2	0	0	0	0	0	22	0	3	0	25	27
14:45 - 15:00	4	0	0	0	4	0	0	0	0	0	30	0	3	0	33	37
15:00 - 15:15	2	0	0	0	2	0	0	0	0	0	35	0	1	0	36	38
15:15 - 15:30	2	0	0	0	2	0	0	0	0	0	28	0	6	0	34	36
15:30 - 15:45 15:45 - 16:00	7	0	0	0 0	7	0	0	0	0	0	19 25	0	1	0	20 29	27 31
16:00 - 16:15	2	0	1	0	2	0	0	0	0	0	25 56	0	4	0	29 59	61
16:15 - 16:30	5	0	0	0	5	0	0	0	0	0	44	1	2	1	48	53
16:30 - 16:45	8	0	0	0	8	0	0	0	0	0	39	0	3	0	42	50
16:45 - 17:00	0	0	0	0	0	0	0	0	0	0	32	1	4	0	37	37
17:00 - 17:15	8	0	0	0	8	0	0	0	0	0	24	0	1	0	25	33
17:15 - 17:30	5	0	0	0	5	0	0	0	0	0	16	0	0	0	16	21
17:30 - 17:45	4	0	0	0	4	0	0	0	0	0	15	0	0	0	15	19
17:45 - 18:00	7	0	1	0	8	0	0	0	0	0	14	0	0	0	14	22
TOTAL	186	0	5	0	191	0	0	0	0	0	1739	4	126	3	1872	2063

					1	FRAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
SITE:	INTER	RSECT	ION C	DF MA	IN ROAI	D 330 .	and N	1AIN F	ROAD	474						
DATE:	12 HC	UR CO	DUNT	ON M	ONDAY	13 AL	IGUST	2012								
UNITS:	CLAS															
APPROACH FROM								EAS	т							TOTAL
NAME							MA	IN RO		0						
MOVEMENT		LE	EFT TI	JRN			S	TRAIC	SHT			R	ALL			
TIME	С	Т	Н	В	TOTAL	С	Т	Н	В	TOTAL	С	Т	H	В	TOTAL	MOVEMENT
06:00 - 06:15	0	0	0	0	0	18	1	1	0	20	0	0	0	0	0	20
06:15 - 06:30	0	0	0	0	0	22	2	0	1	25	_1	0	0	0	1	26
06:30 - 06:45	0	0	0	0	0	51	3	0	0	54	1	0	0	0	1	55
06:45 - 07:00	0	0	0	0	0	96	3	1	1	101	2	0	0	0	2	103
07:00 - 07:15	0	0	0	0	0	143	3	1	1	148	2	0	0	0	2	150
07:15 - 07:30	0	0	0	0	0	72	3	0	0	75	6	0	0	0	6	81
07:30 - 07:45	0	0	0	0	0	64	4	0	0	68	3	0	0	0	3	71
07:45 - 08:00	0	0	0	0	0	70	4	1	2	77	5	0	0	0	5	82
08:00 - 08:15	0	0	0	0	0	37	1	0	0	38	2	0	0	0	2	40
08:15 - 08:30	0	0	0	0	0	41	3	1	0	45	9	0	2	0	11	56
08:30 - 08:45	0	0	0	0	0	33	6	1	0	40	2	0	1	0	3	43
08:45 - 09:00	0	0	0	0	0	40	1	2	0	43	7	0	0	0	7	50
09:00 - 09:15	0	0	0	0	0	43	2	2	1	48	7	0	0	0	7	55
09:15 - 09:30	0	0	0	0	0	46	1	2	1	50	5	0	0	0	5	55
09:30 - 09:45	0	0	0	0	0	26	2	2	0	30	6	0	1	0	7	37
09:45 - 10:00	0	0	0	0	0	40	0	0	0	40	9	0	0	0	9	49
10:00 - 10:15	0	0	0	0	0	43	2	1	0	46	5	0	0	0	5	51
10:15 - 10:30	0	0	0	0	0	27	2	1	0	30	0	0	0	0	0	30
10:30 - 10:45	0	0	0	0	0	42	2	2	0	46	10	0	0	0	10	56
10:45 - 11:00	0	0	0	0	0	37	0	2	0	39	2	0	0	0	2	41
11:00 - 11:15	0	0	0	0	0	42	2	1	0	45	4	0	0	0	4	49
11:15 - 11:30	0	0	0	0	0	33	0	1	0	34	4	0	0	0	4	38
11:30 - 11:45	0	0	0	0	0	44	1	2	1	48	7	0	0	0	7	55
11:45 - 12:00	0	0	0	0	0	60	2	2	0	64	6	0	0	0	6	70
12:00 - 12:15	0	0	0	0	0	28	1	1	0	30	4	0	0	0	4	34
12:15 - 12:30	0	0	0	0	0	60	2	0	0	62	10	0	1	0	11	73
12:30 - 12:45	0	0	0	0	0	47	0	1	0	48	6	0	0	0	6	54
12:45 - 13:00	0	0	0	0	0	21	1	1	0	23	3	0	0	0	3	26
13:00 - 13:15	0	0	0	0	0	50	1	0	1	52	6	0	1	0	7	59
13:15 - 13:30	0	0	0	0	0	37	4	0	0	41	6	0	0	0	6	47
13:30 - 13:45	0	0	0	0	0	48	1	1	0	50	4	0	0	0	4	54
13:45 - 14:00	0	0	0	0	0	54	0	0	0	54	4	0	0	0	4	58
14:00 - 14:15	0	0	0	0	0	35	2	2	1	40	2	0	0	0	2	42
14:15 - 14:30	0	0	0	0	0	36	3	1	0	40	3	0	0	0	3	43
14:30 - 14:45	0	0	0	0	0	34	2	2	0	38	4	0	0	0	4	42
14:45 - 15:00	0	0	0	0	0	29	0	0	0	29	5	0	0	0	5	34
15:00 - 15:15	0	0	0	0	0	58	5	1	0	64	10	0	1	0	11	75
15:15 - 15:30	0	0	0	0	0	45	1	1	1	48	4	0	0	0	4	52
15:30 - 15:45	0	0	0	0	0	37	5	1	0	43	5	0	0	0	5	48
15:45 - 16:00	0	0	0	0	0	46	7	1	0	54	10	0	0	0	10	64
16:00 - 16:15	0	0	0	0	0	64	5	2	2	73	7	0	0	0	7	80
16:15 - 16:30	0	0	0	0	0	41	6	1	0	48	7	0	1	0	8	56
16:30 - 16:45	0	0	0	0	0	63	2	2	1	68	15	0	0	0	15	83
16:45 - 17:00	0	0	0	0	0	44	2	2	1	49	7	0	0	0	7	56
17:00 - 17:15	0	0	0	0	0	48	0	1	0	49	9	0	0	0	9	58
17:15 - 17:30	0	0	0	0	0	55	1	0	0	56	5	0	0	0	5	61
17:30 - 17:45	0	0	0	0	0	27	2	0	0	29	8	0	0	0	8	37
17:45 - 18:00	0	0	0	0	0 0	23 2200	0 103	0 47	0 15	23 2365	1 250	0	0	0	1 258	24 2623

					1	[RAFFI	C SUR	VEY A	ANAL Y	'SIS						
CLIENT:	AURE	CON														
SITE:	INTEF	RSECT)F MA	IN ROAI	D 330 A	ND MA	AIN RO	DAD 4	74						
DATE:	12 HC	UR C	OUNT	ON M	IONDAY	13 AUG	SUST 2	2012								
UNITS:	CLAS															
APPROACH FROM								WEST	Γ							TOTAL
NAME							MAIN	N ROA	D 330							
MOVEMENT			EFT TI					FRAIG	1				GHT T	1		ALL
TIME	С	Т	Н	В	TOTAL	С	Т	н	В	TOTAL	С	Т	н	В	TOTAL	
06:00 - 06:15	5	0	0	0	5	4	2	0	2	8	0	0	0	0	0	13
06:15 - 06:30	14	1	1	0	16	9	4	0	0	13	0	0	0	0	0	29
06:30 - 06:45	15	2	0	0	17	23	5	0	0	28	0	0	0	0	0	45
06:45 - 07:00	32	0	1	1	34	22	10	1	1	34	0	0	0	0	0	68
07:00 - 07:15	49	0	6	0	55	52	13	3	1	69	0	0	0	0	0	124
07:15 - 07:30	19	0	1	0	20	37	8	0	0	45	0	0	0	0	0	65
07:30 - 07:45	35	0	2	0	37	63	9	2	0	74	0	0	0	0	0	111
07:45 - 08:00	42	0	1	0	43	44 46	6	1	2	53 51	0	0	0	0	0	96
08:00 - 08:15	45	0	3	0	48	46	5	0	0	51	0	0	0	0	0	99
08:15 - 08:30	34	0	4	0	38	19	3	0	0	22	0	0	0	0	0	60
08:30 - 08:45	43	0	-		45	18	-	1	0	20	0	0	0	0	0	65
08:45 - 09:00	25	0	1	0	26	19	1	0	1	21	0	0	0	0	0	47
09:00 - 09:15	24	0	1	0	25	31	0	0	0	31	0	0	0	0	0	56
09:15 - 09:30	35	0	4	0	39	33	0	2	0	35	0	0	0	0	0	74
09:30 - 09:45	30	0	6	1	37	28	1	0	0	29	0	0	0	0	0	66
09:45 - 10:00	23	0	4	0	27	38	0	1	0	39	0	0	0	0	0	66
10:00 - 10:15	27	0	3 5	0	30 34	28 28	0	2	0	30 29	0	0	0	0	0	60 63
10:15 - 10:30	29 7	0	2	0	9		0	0	0		0	0	0	0	0	42
10:30 - 10:45		-		0		32	1	1	-	33			0	0	-	
10:45 - 11:00	27 13	0 0	6 6	0	33 19	32 34	0	1	0	33	0	0	0	0	0	66 54
11:00 - 11:15 11:15 - 11:30	30	0	3	0	33	27	0	0	0	35 27	0	0	0	0	0	60
11:30 - 11:45	28	0	2	0	30	17	0	2	0	19	0	0	0	0	0	49
11:45 - 12:00	19	0	2	0	21	27	0	2	0	29	0	0	0	0	0	50
12:00 - 12:15	22	0	4	0	26	27	0	0	0	29	0	0	0	0	0	54
12:15 - 12:30	28	0	2	0	30	37	0	2	0	39	0	0	0	0	0	69
12:30 - 12:45	26	0	4	0	30	14	0	0	0	14	0	0	0	0	0	44
12:45 - 13:00	17	0	1	0	18	20	0	0	0	20	0	0	0	0	0	38
13:00 - 13:15	26	0	5	0	31	49	0	3	0	52	0	0	0	0	0	83
13:15 - 13:30	29	0	4	0	33	38	0	0	0	38	0	0	0	0	0	71
13:30 - 13:45	34	0	3	0	37	37	0	2	1	40	0	0	0	0	0	77
13:45 - 14:00	27	0	1	0	28	38	2	1	0	41	0	0	0	0	0	69
14:00 - 14:15	25	0	3	0	28	47	0	2	0	49	0	0	0	0	0	77
14:15 - 14:30	28	0	2	0	30	41	0	2	0	43	0	0	0	0	0	73
14:30 - 14:45	41	0	2	0	43	48	1	0	0	49	0	0	0	0	0	92
14:45 - 15:00	33	0	1	0	34	41	1	2	0	44	0	0	0	0	0	78
15:00 - 15:15	25	0	3	0	28	54	3	3	0	60	0	0	0	0	0	88
15:15 - 15:30	36	0	2	0	38	38	2	0	1	41	0	0	0	0	0	79
15:30 - 15:45	17	0	4	0	21	48	7	0	0	55	0	0	0	0	0	76
15:45 - 16:00	28	0	4	0	32	30	5	0	0	35	0	0	0	0	0	67
16:00 - 16:15	41	0	2	0	43	44	1	0	1	46	0	0	0	0	0	89
16:15 - 16:30	31	1	2	1	35	53	4	1	1	59	0	0	0	0	0	94
16:30 - 16:45	53	1	1	0	55	68	2	0	0	70	0	0	0	0	0	125
16:45 - 17:00	32	0	0	0	32	68	2	1	0	71	0	0	0	0	0	103
17:00 - 17:15	45	0	3	0	48	60	0	0	0	60	0	0	0	0	0	108
17:15 - 17:30	48	0	0	0	48	47	0	0	0	47	0	0	0	0	0	95
17:30 - 17:45	48	0	0	0	48	45	1	0	0	46	0	0	0	0	0	94
17:45 - 18:00	29	1	0	0	30	26	0	0	0	26	0	0	0	0	0	56
TOTAL	1419	6	118	4	1547	1730	100	39	11	1880	0	0	0	0	0	3427

Intersection of P330 / N2 On-ramp (western)

					Т	RAFF	IC SU	RVEY	ANAL`	YSIS						
CLIENT:	AURE	CON														
CLIENT.	AUKE	CON														
SITE:	INTEF	RSECT	ION C	DF N2	AND MA	IN RC	AD 33	80 (WE	ST O	F INTER	CHAN	GE)				
DATE:	12 HC	UR C	OUNT	ON M	ONDAY	13 AL	IGUST	2012								
UNITS:	CLAS	SIFIED	2													
APPROACH FROM								SOUT								TOTAL
NAME MOVEMENT								OFF F								A1.1
TIME	С	T	EFT TU H	B	TOTAL	С	Т	TRAIG H	В	TOTAL	С	T	GHT T H	B	TOTAL	ALL MOVEMENTS
06:00 - 06:15	11	3	0	1	15	0	0	0	0		11	0	0	0	11	26
06:15 - 06:30	9	14	1	1	25	0	0	0	0	0	9	0	0	0	9	34
06:30 - 06:45	13	10	5	0	28	0	0	0	0	0	6	0	2	0	8	36
06:45 - 07:00	31	15	1	2	49	0	0	0	0	0	20	0	1	1	22	71
07:00 - 07:15	7	7	0	0	14	0	0	0	0	0	25	0	8	0	33	47
07:15 - 07:30	18	7	1	1	27	0	0	0	0	0	14	1	2	0	17	44
07:30 - 07:45	21	2	4	2	29	0	0	0	0	0	42	2	2	0	46	75
07:45 - 08:00	6	5	2	0	13	0	0	0	0	0	30	1	1	1	33	46
08:00 - 08:15	12	16	0	0	28	0	0	0	0	0	42	0	7	0	49	77
08:15 - 08:30 08:30 - 08:45	11 18	6 9	2 1	0	19 29	0	0	0	0	0	27 36	0	4	0	31 37	50 66
08:45 - 09:00	24	9 18	3	0	29 45	0	0	0	0	0	30 79	0	1	0	80	125
09:00 - 09:15	11	0	0	0	11	0	0	0	0	0	52	0	2	1	55	66
09:15 - 09:30	9	0	1	1	11	0	0	0	0	Ő	39	0	2	0	41	52
09:30 - 09:45	11	4	0	1	16	0	0	0	0	0	37	0	6	0	43	59
09:45 - 10:00	7	0	2	0	9	0	0	0	0	0	27	0	5	0	32	41
10:00 - 10:15	4	2	3	0	9	0	0	0	0	0	31	0	1	0	32	41
10:15 - 10:30	15	6	5	0	26	0	0	0	0	0	50	0	3	0	53	79
10:30 - 10:45	20	2	1	0	23	0	0	0	0	0	28	0	4	0	32	55
10:45 - 11:00	17	4	4	_1_	26	0	0	0	0	0	47	0	8	0	55	81
11:00 - 11:15	16	2	3	1	22	0	0	0	0	0	51	0	4	0	55	77
11:15 - 11:30	13	1	1	1	16	0	0	0	0	0	35	0	2	0	37	53
11:30 - 11:45	11	3	2	0	16	0	0	0	0	0	38	0	3	0	41	57
11:45 - 12:00 12:00 - 12:15	9 9	1	1 4	0	11 14	0	0	0	0	0	21 47	0	3 6	0	24 53	35 67
12:15 - 12:30	9 15	0	2	1	14	0	0	0	0	0	24	0	1	0	25	43
12:30 - 12:45	5	2	3	0	10	0	0	0	0	0	34	0	5	0	39	49
12:45 - 13:00	21	2	6	1	30	0	0	0	Ő	0	39	0	3	0	42	72
13:00 - 13:15	9	1	2	0	12	0	0	0	0	0	34	0	4	0	38	50
13:15 - 13:30	6	2	4	0	12	0	0	0	0	0	25	0	4	0	29	41
13:30 - 13:45	7	0	1	0	8	0	0	0	0	0	26	0	2	0	28	36
13:45 - 14:00	10	3	0	0	13	0	0	0	0	0	26	0	5	0	31	44
14:00 - 14:15	8	2	3	1	14	0	0	0	0	0	44	0	6	0	50	64
14:15 - 14:30	6	1	1	0	8	0	0	0	0	0	51	1	3	0	55	63
14:30 - 14:45	7	4	2	1	14	0	0	0	0	0	61	0	1	0	62	76
14:45 - 15:00 15:00 - 15:15	7 46	0 12	0 5	0	7 63	0	0	0	0	0	39 47	1	4	0	44 51	51 114
15:15 - 15:30	46 26	7	5 0	3	36	0	0	0	0	0	47 37	0	4	0	41	77
15:30 - 15:45	48	21	3	3	75	0	0	0	0	0	68	0	5	0	73	148
15:45 - 16:00	33	10	4	2	49	0	0	0	0	0	74	0	4	0	78	127
16:00 - 16:15	15	5	0	1	21	0	0	0	0	0	44	0	2	0	46	67
16:15 - 16:30	10	2	0	0	12	0	0	0	0	0	78	0	5	0	83	95
16:30 - 16:45	12	8	1	2	23	0	0	0	0	0	42	0	0	0	42	65
16:45 - 17:00	44	11	0	0	55	0	0	0	0	0	49	0	1	1	51	106
17:00 - 17:15	47	14	3	1	65	0	0	0	0	0	68	0	2	0	70	135
17:15 - 17:30	33	10	6	0	49	0	0	0	0	0	61	0	0	0	61	110
17:30 - 17:45	23	13	2 0	0	38 17	0	0	0	0	0	62	0	0	0	62 55	100 72
17:45 - 18:00	15	2		0		0	0		0		55	0	0			

					-	FRAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
SITE:	INTER	RSECT)F N2	AND MA	JN RO	AD 33	0 (WE	ST O	F INTER	CHAN	GE)				
												- /				
DATE: UNITS:	12 HC CLAS			ON M	ONDAY	13 AU	GUST	2012								
			_													
APPROACH FROM								EAS	-	_						TOTAL
NAME								IN RO		0						
MOVEMENT TIME	С	T	EFT TI	B	TOTAL	С	T	TRAIO H	В	TOTAL	С	T	IGHT T	B	TOTAL	ALL MOVEMENT
06:00 - 06:15	0	0	0	0		4	1	0	<u>В</u>	6	9	0	0	0	9	15
06:15 - 06:30	0	0	0	0	0	13	1	0	0	14	2	0	0	0	2	16
06:30 - 06:45	0	0	0	0	0	29	5	0	0	34	9	0	0	0	9	43
06:45 - 07:00	0 0 0 0 0 0 0 0 0			0	0	70	4	2	0	76	15	ŏ	0	0	15	91
07:00 - 07:15	-	-		0	0	84	2	3	3	92	57	0	0	0	57	149
07:15 - 07:30	0	0	0	0	0	52	5	0	0	57	30	0	0	0	30	87
07:30 - 07:45	0	0	0	0	0	15	7	3	0	25	7	0	0	0	7	32
07:45 - 08:00	0	0	0	0	0	80	8	3	1	92	40	0	0	0	40	132
08:00 - 08:15	0	0	0	0	0	30	0	1	0	31	11	0	0	0	11	42
08:15 - 08:30	0	0	0	0	0	18	3	0	0	21	10	0	2	0	12	33
08:30 - 08:45	0	0	0	0	0	30	6	1	0	37	29	0	2	0	31	68
08:45 - 09:00	0	0	0	0	0	39	2	2	0	43	20	0	1	0	21	64
09:00 - 09:15	0	0	0	0	0	24	0	3	2	29	9	0	1	0	10	39
09:15 - 09:30	0	0	0	0	0	30	1	1	2	34	14	0	2	0	16	50
09:30 - 09:45	0	0	0	0	0	18	3	0	0	21	10	0	0	0	10	31
09:45 - 10:00	0	0	0	0	0	27	1	3	0	31	2	0	0	0	2	33
10:00 - 10:15	0	0	0	0	0	10 16	2 2	2	0	14 20	2 6	0	0	0	2	16 26
10:15 - 10:30 10:30 - 10:45	0	0	0	0	0	27	2	4	0	33	1	0	1	0	6	35
10:45 - 11:00	0	0	0	0	0	28	0	2	0	30	5	0	0	0	5	35
11:00 - 11:15	0	0	0	0	Ő	24	2	1	Ő	27	6	õ	0	0	6	33
11:15 - 11:30	0	0	0	0	0	28	1	2	0	31	5	0	0	0	5	36
11:30 - 11:45	0	0	0	0	0	15	1	0	1	17	3	0	0	0	3	20
11:45 - 12:00	0	0	0	0	0	16	1	2	0	19	0	0	0	0	0	19
12:00 - 12:15	0	0	0	0	0	11	0	1	0	12	1	0	0	0	1	13
12:15 - 12:30	0	0	0	0	0	16	2	3	0	21	3	0	0	0	3	24
12:30 - 12:45	0	0	0	0	0	27	0	1	0	28	7	0	0	0	7	35
12:45 - 13:00	0	0	0	0	0	22	0	1	1	24	4	0	0	0	4	28
13:00 - 13:15	0	0	0	0	0	26	1	2	1	30	6	0	0	0	6	36
13:15 - 13:30	0	0	0	0	0	22	4	0	0	26	3	0	0	0	3	29
13:30 - 13:45	0	0	0	0	0	21	1	0	0	22	4	0	0	0	4	26
13:45 - 14:00	0	0	0	0	0	53	1	0	0	54	5	0	0	0	5	59
14:00 - 14:15	0	0	0	0	0	65 60	4 1	1	1 0	71 63	5 5	0	0	0	5	76
14:15 - 14:30 14:30 - 14:45	0	0	0	0	0	60 43	1	2	0	45	5 6	0	0	0	6	69 51
14:45 - 15:00	0	0	0	0	0	43 59	1	2	0	45 60	2	0	0	0	2	62
15:00 - 15:15	0	0	0	0	0	88	3	0	0	91	∠ 11	0	0	0	11	102
15:15 - 15:30	0	0	0	0	0	69	2	1	0	72	9	0	1	0	10	82
15:30 - 15:45	0	0	0	0	0	87	8	1	2	98	9	0	1	0	10	108
15:45 - 16:00	0	0	0	0	0	97	5	0	0	102	15	0	0	0	15	117
16:00 - 16:15	0	0	0	0	0	77	4	1	1	83	10	0	0	1	11	94
16:15 - 16:30	0	0	0	0	0	69	6	1	2	78	9	0	1	0	10	88
16:30 - 16:45	0	0	0	0	0	66	0	0	0	66	7	0	0	0	7	73
16:45 - 17:00	0	0	0	0	0	58	4	1	1	64	7	0	0	0	7	71
17:00 - 17:15	0	0	0	0	0	49	1	1	1	52	12	0	0	0	12	64
17:15 - 17:30	0	0	0	0	0	42	0	0	0	42	8	0	1	0	9	51
17:30 - 17:45	0	0	0	0	0	25	2	0	0	27	8	0	0	0	8	35
17:45 - 18:00	0	0	0	0	0	18	0	0	0	18	4	0	0	0	4	22

					٦	FRAFFI	C SUR	VEY A	NALY	'SIS						
CLIENT:	AURE	CON														
	AONE															
SITE:	INTEF	RSECT		OF N2	AND MA	IN ROA	D 330	(WES	ST OF	INTERC	HANG	E)				
DATE:	12 HC				ONDAY	13 410		2012								
UNITS:		SIFIE				13 AUC	50312	2012								
	02/10															
APPROACH FROM								WEST	-							TOTAL
NAME								ROA								
MOVEMENT				1				RAIG					GHT T	1		ALL
TIME	C	Т	Н	B	TOTAL	C	T	H	B	TOTAL	C	Т	Н	B	TOTAL	MOVEMENT
06:00 - 06:15	1	0	0	0	1	33 71	14	1	1	49 108	0	0	0	0	0	50 109
06:15 - 06:30 06:30 - 06:45	1	0 0	0	0	1	50	33 25	3	1	77	0	0	0	0	0	78
06:45 - 07:00	4	0	0	0	4	106	30	7	0	143	0	0	0	0	0	147
07:00 - 07:15	4	0	0	0	4	180	29	2	1	212	0	0	0	0	0	216
07:15 - 07:30	2	0	0	0	2	140	25	6	3	174	0	0	0	0	0	176
07:30 - 07:45	7	0	0	0	7	197	16	4	2	219	0	0	0	0	0	226
07:45 - 08:00	2	0	1	0	3	126	30	6	2	164	0	0	0	0	0	167
08:00 - 08:15	1	0	0	0	1	78	26	4	0	108	0	0	0	0	0	109
08:15 - 08:30	7	0	0	0	7	93	16	2	1	112	0	0	0	0	0	119
08:30 - 08:45	5	0	1	0	6	29	8	4	1	42	0	0	0	0	0	48
08:45 - 09:00	4	0	0	0	4	77	19	3	1	100	0	0	0	0	0	104
09:00 - 09:15	0	0	0	0	0	56	4	4	1	65	0	0	0	0	0	65
09:15 - 09:30	2	0	1	0	3	73	6	7	0	86	0	0	0	0	0	89
09:30 - 09:45	1	0	0	0		50	10	4	1	65	0	0	0	0	0	66
09:45 - 10:00	0	0	0	0	0	56	6	4	0	66	0	0	0	0	0	66
10:00 - 10:15	2	0	0	0	2	57 71	6 5	8 9	1	72 85	0	0	0	0	0	74 89
10:15 - 10:30 10:30 - 10:45	3	0	1	0	4	66	5 8	9	0	81	0	0	0	0	0	84
10:45 - 11:00	5	0	0	0	5	87	4	3	1	95	0	0	0	0	0	100
11:00 - 11:15	3	0	2	0	5	63	4	4	0	71	0	Ő	0	0	0	76
11:15 - 11:30	1	0	2	0	3	121	4	. 7	Ő	132	0	Ő	0	0	0	135
11:30 - 11:45	0	0	0	0	0	80	5	11	0	96	0	0	0	0	0	96
11:45 - 12:00	0	0	0	0	0	60	9	10	1	80	0	0	0	0	0	80
12:00 - 12:15	3	0	0	0	3	98	5	6	0	109	0	0	0	0	0	112
12:15 - 12:30	0	0	0	0	0	56	3	3	0	62	0	0	0	0	0	62
12:30 - 12:45	4	0	0	0	4	82	4	6	1	93	0	0	0	0	0	97
12:45 - 13:00	4	0	0	0	4	125	6	4	0	135	0	0	0	0	0	139
13:00 - 13:15	3	0	1	0	4	99	5	7	0	111	0	0	0	0	0	115
13:15 - 13:30	3	0	0	0	3	79	3	12	1	95	0	0	0	0	0	98
13:30 - 13:45	2	0	1	0	3	96	4	8	1	109	0	0	0	0	0	112
13:45 - 14:00 14:00 - 14:15	3	0	0	0	3	88 147	8 0	6 3	0	102 152	0	0	0	0	0	105 158
14:15 - 14:30	7	0	0	0	7	147	8	3	2	132	0	0	0	0	0	150
14:30 - 14:45	2	0	0	1	3	123	8	7	0	137	0	0	0	0	0	140
14:45 - 15:00	5	0	1	0	6	96	12	5	0	113	0	0	0	0	0	119
15:00 - 15:15	0	0	0	0	0	145	11	5	2	163	0	0	0	0	0	163
15:15 - 15:30	5	0	0	1	6	91	8	4	0	103	0	0	0	0	0	109
15:30 - 15:45	3	0	0	0	3	141	25	4	0	170	0	0	0	0	0	173
15:45 - 16:00	5	0	0	0	5	96	14	5	0	115	0	0	0	0	0	120
16:00 - 16:15	3	0	0	0	3	92	12	6	2	112	0	0	0	0	0	115
16:15 - 16:30	0	0	0	0	0	145	18	4	2	169	0	0	0	0	0	169
16:30 - 16:45	2	0	0	0	2	108	14	2	1	125	0	0	0	0	0	127
16:45 - 17:00	6	0	0	0	6	99	16	4	0	119	0	0	0	0	0	125
17:00 - 17:15	3	0	0	0	3	152 70	18	8	1	179	0	0	0	0	0	182
17:15 - 17:30	5	0	0	0	5	72	10	2	1	85	0	0	0	0	0	90
17:30 - 17:45 17:45 - 18:00	2	0 0	0	0	2	72 66	6 9	0	2	80 78	0	0	0	0	0	82 83
TOTAL	138	0	12	3	153	4512	569	237	37	5355	0	0	0	0	0	5508

Intersection of P330 / N2 On-ramp (Eastern)

					Т	RAFF	IC SU	RVEY	ANAL`	YSIS						
CLIENT:	AURE	CON														
OLILINI.	AORE															
SITE:	INTEF	RSECT	ION C	DF N2	AND MA	IN RC	AD 33	80 (EA	ST OF	INTERC	CHANC	GE)				
DATE:	12 HC	UR C	OUNT	ON M	ONDAY	13 AL	JGUST	2012								
UNITS:	CLAS	SIFIED)													
	_															
APPROACH FROM NAME							NO	NORT								TOTAL
MOVEMENT	-	I F	EFT TI	IRN				OFF F				RI	<u> GHT Т</u>	URN		ALL
TIME	С	T	Н	В	TOTAL	С	Т	H	В	TOTAL	С	T	Н	B	TOTAL	
06:00 - 06:15	3	0	0	1	4	0	0	0	0	0	2	0	0	0	2	6
06:15 - 06:30	2	0	0	0	2	0	0	0	0	0	3	0	0	0	3	5
06:30 - 06:45	5	0	0	0	5	0	0	0	0	0	2	0	0	0	2	7
06:45 - 07:00	15	0	0	1	16	0	0	0	0	0	1	0	0	0	1	17
07:00 - 07:15 07:15 - 07:30	12 8	0 0	0 0	1 0	13 8	0 0	0 0	0 0	0 0	0 0	4 3	0 0	0 0	1 0	5 3	18 11
07:30 - 07:45	8 6	0	0	0	8 6	0	0	0	0	0	3 4	0	0	0	3 4	10
07:45 - 08:00	9	0	0	0	9	0	0	0	0	0	4	0	0	0	4	13
08:00 - 08:15	4	0	0	0	4	0	0	0	0	0	2	0	0	0	2	6
08:15 - 08:30	2	0	0	0	2	0	0	0	0	0	4	0	0	0	4	6
08:30 - 08:45	6	0	0	0	6	0	0	0	0	0	1	0	0	0	1	7
08:45 - 09:00	10	0	0	0	10	0	0	0	0	0	8	0	0	0	8	18
09:00 - 09:15	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	5
09:15 - 09:30	4	0	0	0	4	0	0	0	0	0	1	0	0	0	1	5
09:30 - 09:45 09:45 - 10:00	3	0	0	0	3	0 0	0	0	0	0	2	0	0	0	2	5
10:00 - 10:15	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	5
10:15 - 10:30	5	0	0	0	5	0	0	0	ŏ	0	2	Ő	0	0	2	7
10:30 - 10:45	1	0	0	0	1	0	0	0	0	0	5	0	2	0	7	8
10:45 - 11:00	7	0	0	0	7	0	0	0	0	0	3	0	0	0	3	10
11:00 - 11:15	10	0	0	0	10	0	0	0	0	0	0	0	0	0	0	10
11:15 - 11:30	4	0	1	0	5	0	0	0	0	0	3	0	0	0	3	8
11:30 - 11:45	8	0	1	0	9 11	0	0	0	0	0	2 4	0	0	0	2	11
11:45 - 12:00 12:00 - 12:15	11 6	0	0	0	6	0	0	0	0	0	4	0	0	0	4	15 7
12:15 - 12:30	9	0	0	0	9	0	0	0	0	0	4	0	0	0	4	13
12:30 - 12:45	9	0	0	0	9	0	0	0	0	0	3	0	0	0	3	12
12:45 - 13:00	9	0	1	0	10	0	0	0	0	0	5	0	1	0	6	16
13:00 - 13:15	9	0	0	0	9	0	0	0	0	0	1	0	1	0	2	11
13:15 - 13:30	8	0	2	0	10	0	0	0	0	0	2	0	0	0	2	12
13:30 - 13:45	9	0	0	0	9	0	0	0	0	0	3	0	0	0	3	12
13:45 - 14:00 14:00 - 14:15	7	0	0	0	7	0	0	0	0	0	9 3	0	0	0	9 5	16 14
14:15 - 14:15	4	0	0	0	9	0	0	0	0	0	2	0	2	0	5	6
14:30 - 14:45	14	0	0	0	14	0	0	0	0	0	3	0	0	0	3	17
14:45 - 15:00	5	0	0	0	5	0	0	0	0	0	2	0	0	0	2	7
15:00 - 15:15	9	0	0	0	9	0	0	0	0	0	3	1	0	0	4	13
15:15 - 15:30	12	0	0	0	12	0	0	0	0	0	6	0	0	0	6	18
15:30 - 15:45	5	0	0	0	5	0	0	0	0	0	5	0	0	0	5	10
15:45 - 16:00	4	0	0	0	4	0	0	0	0	0	2	0	0	0	2	6
16:00 - 16:15 16:15 - 16:30	13 17	0 2	1 0	0 1	14 20	0	0	0	0	0	5 2	0	1 0	0	6 2	20 22
16:30 - 16:45	11	2	0	0	20 11	0	0	0	0	0	2 4	0	1	0	5	16
16:45 - 17:00	9	0	0	0	9	0	0	0	0	0	0	0	0	0	0	9
17:00 - 17:15	13	0	0	0	13	0	0	0	0	0	4	0	0	0	4	17
17:15 - 17:30	11	0	0	0	11	0	0	0	0	0	1	0	0	0	1	12
17:30 - 17:45	9	0	0	0	9	0	0	0	0	0	0	0	0	0	0	9
17:45 - 18:00	13	0	0	0	13	0	0	0	0	0	0	0	0	0	0	13
TOTAL	369	3	7	4	383	0	0	0	0	0	131	1	8	1	141	524

					-	TRAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
SITE:	INTER	SECT)FN2	AND MA	AN RO	AD 33	0 (EA	ST OF		HANC	SE)				
DATE: JNITS:	12 HO CLAS			ON M	ONDAY	13 AU	IGUST	2012								
APPROACH FROM								EAS	т.							TOTAL
NAME							MA	N RO		0						101712
MOVEMENT		LE	EFT TI	JRN			S	TRAIG	SHT			R	IGHT T	URN	T	ALL
TIME	С	Т	Н	В	TOTAL	С	Т	Н	В	TOTAL	С	Т	Н	В	TOTAL	MOVEMENT
06:00 - 06:15	13	0	0	0	13	13	1	0	1	15	0	0	0	0	0	28
06:15 - 06:30	37	0	1	0	38	20	1	0	0	21	0	0	0	0	0	59
06:30 - 06:45 06:45 - 07:00	62 84	0	2	0	64 87	35 77	5 4	0 2	0	40 83	0	0	0	0	0	104 170
07:00 - 07:15	106	0	0	1	107	135	3	2	2	143	0	0	0	0	0	250
07:15 - 07:30	89	Õ	3	0	92	79	7	0	0	86	0	0	0 0	0	0	178
07:30 - 07:45	159	0	2	0	161	41	6	3	0	50	0	0	0	0	0	211
07:45 - 08:00	27	0	1	0	28	50	6	3	1	60	0	0	0	0	0	88
08:00 - 08:15	59	0	2	0	61	95	0	1	0	96	0	0	0	0	0	157
08:15 - 08:30	65	0	3	0	68	31	4	2	0	37	0	0	0	0	0	105
08:30 - 08:45	63	0	2	0	65	38	6	1	0	45	0	0	0	0	0	110
08:45 - 09:00	54	0	0	0	54	51	1	5	0	57	0	0	0	0	0	111
09:00 - 09:15	48	0	2	0	50	33	0	4	2	39	0	0	0	0	0	89
09:15 - 09:30 09:30 - 09:45	46	0	6	0	52	43	1	2	2	48	0	0	0	0	0	100
09:45 - 10:00	47	0	2	0	49 75	30 21	3 1	1 5	0	34 27	0	0	0	0	0	83 102
10:00 - 10:15	41	0	4	0	45	47	2	1	0	50	0	0	0	0	0	95
10:15 - 10:30	34	0	0	0	34	25	2	2	0	29	Ő	0	0	0	0	63
10:30 - 10:45	56	0	5	0	61	36	2	0	0	38	0	0	0	0	0	99
10:45 - 11:00	44	0	4	0	48	39	0	2	0	41	0	0	0	0	0	89
11:00 - 11:15	56	0	1	0	57	39	2	1	0	42	0	0	0	0	0	99
11:15 - 11:30	39	0	3	0	42	39	1	3	0	43	0	0	0	0	0	85
11:30 - 11:45	67	0	3	0	70	36	1	0	1	38	0	0	0	0	0	108
11:45 - 12:00	49	0	1	0	50	26	1	1	0	28	0	0	0	0	0	78
12:00 - 12:15	52	0	4	0	56	35	0	1	0	36	0	0	0	0	0	92
12:15 - 12:30 12:30 - 12:45	39	0	4	0	43 50	23 33	2 0	2	0	27 34	0	0	0	0	0	70 84
12:45 - 13:00	46 56	0	4	0	57	52	0	1	1	54	0	0	0	0	0	04 111
13:00 - 13:15	58	0	5	0	63	37	1	2	1	41	0	0	0	0	0	104
13:15 - 13:30	58	0	1	Ő	59	40	4	0	0	44	0	0	0	0	0	103
13:30 - 13:45	56	0	2	0	58	48	1	0	0	49	0	0	0	0	0	107
13:45 - 14:00	49	0	5	0	54	52	1	0	0	53	0	0	0	0	0	107
14:00 - 14:15	47	0	5	0	52	61	4	3	1	69	0	0	0	0	0	121
14:15 - 14:30	40	0	1	0	41	50	1	0	0	51	0	0	0	0	0	92
14:30 - 14:45	48	0	1	0	49	47	0	2	0	49	0	0	0	0	0	98
14:45 - 15:00	28	0	4	2	34	36	1	0	0	37	0	0	0	0	0	71 97
15:00 - 15:15 15:15 - 15:30	48 48	0	1	1	50 50	43 48	4	0	0	47 50	0	0	0	0	0	97
15:30 - 15:45	57	0	2	0	59	40 67	8	1	2	78	0	0	0	0	0	137
15:45 - 16:00	42	0	2	0	44	36	5	0	0	41	0	0	0	0	0	85
16:00 - 16:15	56	0	3	0	59	66	4	1	1	72	0	0	0	0	0	131
16:15 - 16:30	58	0	6	0	64	72	6	1	3	82	0	0	0	0	0	146
16:30 - 16:45	56	0	4	0	60	60	0	1	0	61	0	0	0	0	0	121
16:45 <mark>-</mark> 17:00	37	0	9	0	46	50	4	1	1	56	0	0	0	0	0	102
17:00 - 17:15	43	0	4	1	48	63	1	1	1	66	0	0	0	0	0	114
17:15 - 17:30	26	0	3	0	29	55	0	1	0	56	0	0	0	0	0	85
17:30 - 17:45	38	0	0	0	38	37	2	0	0	39	0	0	0	0	0	77
17:45 - 18:00 TOTAL	48 2552	0	0 125	0 5	48 2682	22 2212	0 110	0 62	0 20	22 2404	0	0	0	0	0	70 5086

					1	[RAFFI	C SUR	VEY A	NALY	'SIS						
CLIENT:	AURE	CON														
SITE:	INTEF	RSECT		DF N2	AND MA	IN ROA	ND 330	(EAS	T OF	INTERC	HANGE	Ξ)				
DATE:	12 HC	UR C	OUNT	ON M	ONDAY	13 AUG	SUST	2012								
UNITS:	CLAS	SIFIE	C													
APPROACH FROM								WEST	-							TOTAL
NAME							MAIN	NROA								TOTAL
MOVEMENT		LE	EFT TI	JRN	-		S	TRAIG	HT			RI	GHT T	URN		ALL
TIME	С	Т	Н	В	TOTAL	С	Т	Н	В	TOTAL	С	Т	н	В	TOTAL	MOVEMENT
06:00 - 06:15	0	0	0	0	0	23	2	0	1	26	19	12	1	0	32	58
06:15 - 06:30	0	0	0	0	0	36	7	1	0	44	44	27	2	2	75	119
06:30 - 06:45	0	0	0	0	0	23	5	1	0	29	39	20	1	0	60	89
06:45 - 07:00	0	0	0	0	0	61	13	2	1	77	74	21	6	1	102	179
07:00 - 07:15 07:15 - 07:30	0	0	0 0	0	0	110 96	15 9	7	0 1	132 110	104 74	16 10	2	1 3	123 93	255
07:30 - 07:45	0	0	0	0	0	90 116	9 11	4	0	131	103	10	6 2	3 1	116	203 247
07:45 - 08:00	0	0	0	0		125	13	4	2	131	58	10	5	0	82	247
08:00 - 08:15	0	0	0	0	0	100	5	5	0	110	31	24	5	0	60	170
08:15 - 08:30	0	0	0	0	0	65	3	5	0	73	35	12	1	1	49	170
08:30 - 08:45	0	0	0	0	0	66	1	4	1	72	31	8	2	0	41	113
08:45 - 09:00	0	0	0	0	0	81	1	3	1	86	32	12	2	0	46	132
09:00 - 09:15	0	0	0	0	Ő	75	0	2	1	78	33	5	2	1	41	119
09:15 - 09:30	0	0	0	0	Ő	78	0	8	0	86	30	6	4	0	40	126
09:30 - 09:45	0	0	0	0	Ő	74	3	7	Ő	84	26	9	5	1	41	125
09:45 - 10:00	0	0	0	0	Ō	53	0	6	0	59	24	4	5	0	33	92
10:00 - 10:15	0	0	0	0	Ō	84	1	8	0	93	44	8	5	1	58	151
10:15 - 10:30	0	0	0	0	0	57	0	0	0	57	25	5	4	0	34	91
10:30 - 10:45	0	0	0	0	0	65	1	10	0	76	31	4	5	0	40	116
10:45 - 11:00	0	0	0	0	0	75	0	5	0	80	36	3	3	1	43	123
11:00 - 11:15	0	0	0	0	0	68	0	4	0	72	28	4	3	0	35	107
11:15 - 11:30	0	0	0	0	0	79	0	4	0	83	36	2	3	0	41	124
11:30 - 11:45	0	0	0	0	0	115	0	6	0	121	36	6	11	1	54	175
11:45 - 12:00	0	0	0	0	0	50	0	10	0	60	17	5	3	0	25	85
12:00 - 12:15	0	0	0	0	0	96	0	7	0	103	37	6	5	0	48	151
12:15 - 12:30	0	0	0	0	0	59	0	5	0	64	24	1	1	0	26	90
12:30 - 12:45	0	0	0	0	0	65	0	3	0	68	26	4	5	1	36	104
12:45 - 13:00	0	0	0	0	0	137	0	3	0	140	47	9	3	0	59	199
13:00 - 13:15	0	0	0	0	0	71	0	9	0	80	35	4	3	0	42	122
13:15 - 13:30	0	0	0	0	0	61	0	7	0	68	25	2	9	0	36	104
13:30 - 13:45	0	0	0	0	0	83	0	3	0	86	41	3	5	1	50	136
13:45 - 14:00	0	0	0	0	0	64	3	4	0	71	34	5	6	1	46	117
14:00 - 14:15	0	0	z	0	0	132	1	2	0	135	83	3	3	0	89	224
14:15 - 14:30	0	0	0	0	0	131	0		0	135	66	5	3	3	77	212
14:30 - 14:45 14:45 - 15:00	0	0	0	0	0	146 153	3	3	0	152 163	53 25	5 5	7	0	65 33	217 196
15:00 - 15:15	0	0	0	0	0	97	2	5	0	105	25 51	5	3	0	61	196
15:15 - 15:30	0	0	0	0	0	129	2	7	1	139	46	1	1	2	50	189
15:30 - 15:45	0	0	0	0	0	92	10	5	0	107	65	12	4	0	81	188
15:45 - 16:00	0	0	0	0	0	71	2	8	0	81	38	8	1	0	47	128
16:00 - 16:15	Ő	0	0	Ő	0	88	3	2	1	94	44	13	5	1	63	157
16:15 - 16:30	0	0	0	0	Ő	181	4	3	0	188	51	14	4	1	70	258
16:30 - 16:45	0	0	0	0	Ō	123	3	0	0	126	55	11	2	1	69	195
16:45 - 17:00	0	0	0	0	Ō	120	2	1	1	124	31	14	4	0	49	173
17:00 - 17:15	0	0	0	0	0	166	6	4	0	176	51	14	6	1	72	248
17:15 - 17:30	0	0	0	0	0	108	0	0	0	108	26	8	3	1	38	146
17:30 - 17:45	0	0	0	0	0	114	0	0	0	114	30	11	0	2	43	157
17:45 - 18:00	0	0	0	0	0	111	1	0	0	112	25	4	2	1	32	144
TOTAL	0	0	0	0	0	4373	137	199	11	4720	2019	421	176	30	2646	7366

Intersection of P467 / P228

					Т	RAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
SITE:	INTEF	RSECT	ION C	DF MA	IN ROAE	D 467		1AIN R	ROAD	228						
DATE:	12 HC	UR CO	OUNT	ON M	ONDAY	13 AL	JGUST	2012								
UNITS:	CLAS	SIFIED)													
APPROACH FROM	1							NORT								TOTAL
NAME										TION			<u> GHT Т</u>			AL 1
MOVEMENT TIME	С	Т	EFT TU H	B	TOTAL	С	T	TRAIC	В	TOTAL	С		H	B	TOTAL	ALL MOVEMENTS
06:00 - 06:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
06:15 - 06:30	0	0	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0
06:30 - 06:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:45 - 07:00	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
07:00 - 07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15 - 07:30	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
07:30 - 07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45 - 08:00 08:00 - 08:15	0	0 0	0 0	0 0	0 0	1 0	0 0	0	0	1 0	0 0	0	0 0	0	0	1 0
08:15 - 08:30	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
08:30 - 08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45 - 09:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
09:00 - 09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15 - 09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30 - 09:45	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
09:45 - 10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 - 10:15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
10:15 - 10:30 10:30 - 10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45 - 11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 - 11:15	0	0	0	0	0	0	0	0	0	0	Ő	0	0	0	0	0
11:15 - 11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 - 11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45 - 12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 - 12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 - 12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 - 12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45 - 13:00 13:00 - 13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15 - 13:30	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2
13:30 - 13:45	0	0	0	0	ŏ	0	0	0	0	0	0	0	0	0	0	0
13:45 - 14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00 - 14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15 - 14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:30 - 14:45	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	2
14:45 - 15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00 - 15:15 15:15 - 15:30	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
15:30 - 15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45 - 16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00 - 16:15	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	4
16:15 - 16:30	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
16:30 - 16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45 - 17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00 - 17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15 - 17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30 - 17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45 - 18:00	0	0	0	0	0 2	0 2	0	0	0	0 2	0 11	0	0 2	0	0 13	0 17

	1				Т	RAFF	IC SU	RVEY	ANAL	YSIS						1
CLIENT:	AURE	CON														
SITE:	INTER			Ε ΜΔ	IN ROAI	1 /67				228						
SITE.		(OLUI				5407				220						
DATE: UNITS:	-	our co Sifiei		ON M	ONDAY	13 AL	JGUST	2012								
UNITO.	ULAS															
APPROACH FROM	1							SOUT	Ή							TOTAL
NAME								N ROA		3			<u></u>			
MOVEMENT TIME	С		EFT TU	JRN B	TOTAL	С	T S	TRAIC	В	TOTAL	С	RI T	<u>GHT T</u> Н	B	TOTAL	ALL MOVEMENT
06:00 - 06:15	0	0	0	0		0	0	0	0		0	0	0	0		
06:15 - 06:30	2	0	0	0	2	0	0	0	0	0	1	0	0	0	1	3
06:30 - 06:45	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
06:45 - 07:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
07:00 - 07:15	0	0	3	0	3	0	0	0	0	0	0	0	0	0	0	3
07:15 - 07:30	2	0	2	0	4	0	0	0	0	0	0	0	0	0	0	4
07:30 - 07:45	1	0	1	0	2	0	0	0	0	0	0	0	1	0	1	3
07:45 - 08:00	1	0	1	0	2	0	0	0	0	0	3	0	0	0	3	5
08:00 - 08:15	0	0	1	0		1	0	0	0	1	0	0	0	0	0	2
08:15 - 08:30	2	0	1	1	4	0	0	0	0	0	0	0	0	0	0	4
08:30 - 08:45	1	0	1 0	0	2	0	0	0	0	0	0	0	0	0	0	2 4
08:45 - 09:00 09:00 - 09:15	0	0	1	2	2	0	0	0	0	1	1	0	0	0	1	3
09:15 - 09:30	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0	2
09:30 - 09:45	1	0	1	0	2	0	0	0	0	0	0	0	2	0	2	4
09:45 - 10:00	0	0	1	0	1	1	0	0	0	Ĭ	1	0	0	0	1	3
10:00 - 10:15	2	0	3	0	5	0	0	0	0	0	0	0	0	0	0	5
10:15 - 10:30	1	0	2	0	3	0	0	0	0	0	4	0	0	0	4	7
10:30 - 10:45	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
10:45 - 11:00	1	0	2	0	3	0	0	0	0	0	1	0	0	0	1	4
11:00 - 11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15 - 11:30	2	0	1	0	3	0	0	0	0	0	0	0	0	0	0	3
11:30 - 11:45	5	0	5	0	10	0	0	0	0	0	0	0	1	0	1	11
11:45 - 12:00	2	0	1	0	3	0	0	0	0	0	0	0	0	0	0	3
12:00 - 12:15	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2
12:15 - 12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30 - 12:45 12:45 - 13:00	2	0	1 0	6 0	9	0	0	0	0	0	1 0	0	1	0	0	11 0
13:00 - 13:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
13:15 - 13:30	0	0	1	0	1	0	0	0	Ō	0	1	0	1	0	2	3
13:30 - 13:45	Ō	Ő	0	ŏ	0	0	0	Ő	0	0	0	0	0	0	0	0
13:45 - 14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00 - 14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15 - 14:30	0	0	2	0	2	0	0	0	0	0	1	0	0	0	1	3
14:30 - 14:45	2	0	3	0	5	0	0	1	0	1	2	0	1	0	3	9
14:45 - 15:00	1	0	1	0	2	0	0	0	0	0	0	0	1	0	1	3
15:00 - 15:15	1	0	5	0	6	0	0	0	0	0	3	0	1	0	4	10
15:15 - 15:30	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
15:30 - 15:45 15:45 - 16:00	1	0	1 1	0	2	0	0	0	0	0	0 1	0	0	0	0	2
16:00 - 16:15	4	0	2	0	6	0	0	0	0	0	0	0	0	0	0	6
16:15 - 16:30	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2
16:30 - 16:45	4	0	0	0	4	0	0	0	0	0	2	0	1	0	3	7
16:45 - 17:00	0	0	1	0	1	0	0	0	0	0	4	0	0	0	4	5
17:00 - 17:15	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	5
17:15 - 17:30	4	0	1	0	5	0	0	0	0	0	0	0	0	0	0	5
17:30 - 17:45	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
17:45 - 18:00	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
TOTAL	56	0	48	10	114	3	0	1	0	4	32	0	10	0	42	160

					٦	FRAFF	IC SU	IRVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
02121111	/ 10/ 12															
SITE:	INTEF	RSECT	TON C	DF MA	IN ROAE	D 467	and N	/AIN F	ROAD	228						
DATE:	12 HC	UR C	OUNT	ON M	ONDAY	13 AL	IGUST	2012								
UNITS:		SIFIED														
APPROACH FROM								EAS	· T							TOTAL
							МА	IN RO		57						TOTAL
MOVEMENT		LE	EFT TU	JRN				TRAIC				R	IGHT T	URN		ALL
TIME	С	Т	Н	В	TOTAL	С	Т	Н	В	TOTAL	С	Т	H	В	TOTAL	MOVEMENT
06:00 - 06:15	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
06:15 - 06:30	0	0	0	0	0	4	0	1	0	5	0	0	0	0	0	5
06:30 - 06:45	5	0	1	0	6	5	0	0	0	5	0	0	0	0	0	11
06:45 - 07:00	2	0	1	0	3	4	0	2	0	6	0	0	0	0	0	9
07:00 - 07:15	3	0	0	0	3	12	0	1	0	13	0	0	0	0	0	16
07:15 - 07:30	0	0	1	0	1	10	0	2	1	13	0	0	0	0	0	14
07:30 - 07:45 07:45 - 08:00	2	0 0	0 0	0 0	2 1	6 5	0 0	1	0	7 7	0 0	0 0	0	0	0	9 8
07.45 - 08.00	2	0	0	0	2	о 6	0	2	0	8	0	0	0	0	0	0 10
08:15 - 08:30	2	0	0	0	0	3	0	0	0	3	1	0	0	0	1	4
08:30 - 08:45	0	0	0	0	0	5	0	ŏ	0	5	0	0	0	0	Ó	5
08:45 - 09:00	1	0	0	1	2	4	0	ŏ	1	5	0	0	0	0	Ő	7
09:00 - 09:15	1	0	0	0	1	. 11	0	0	0	11	0	0	0	0	0	12
09:15 - 09:30	0	0	0	0	0	8	0	1	0	9	0	0	0	0	0	9
09:30 - 09:45	2	0	1	0	3	6	0	1	0	7	0	0	0	0	0	10
09:45 - 10:00	1	0	0	0	1	6	0	1	0	7	0	0	0	0	0	8
10:00 - 10:15	0	0	0	0	0	7	0	2	0	9	0	0	0	0	0	9
10:15 - 10:30	0	0	0	0	0	4	0	1	0	5	0	0	0	0	0	5
10:30 - 10:45	6	0	1	0	7	4	0	0	0	4	0	0	1	0	1	12
10:45 - 11:00	2	0	0	0	2	6	0	0	0	6	0	0	0	0	0	8
11:00 - 11:15	0	0	0	0	0	6	0	0	0	6	1	0	0	0	1	7
11:15 - 11:30	0	0	0	0	0	5	0	1	0	6	0	0	0	0	0	6
11:30 - 11:45	0	0	0	0	0	5	0	1	0	6	0	0	0	0	0	6
11:45 - 12:00	1	0	2	0	3	4	0	3	0	7	0	0	0	0	0	10
12:00 - 12:15	1	0	0	0		6	0	0	0	6	0	0	0	0	0	7
12:15 - 12:30	0	0	0	0	0	7	0	2	0	9	0	0	0	0	0	9
12:30 - 12:45 12:45 - 13:00	0	0	0	0	0	0	0 0	1	0	3	0	0	0	0	0	3
13:00 - 13:15	3	0	0	0	3	5	0	2	0	7	0	0	0	0	0	10
13:15 - 13:30	0	0	1	0	1	4	0	0	0	4	0	0	0	0	0	5
13:30 - 13:45	0	0	0	Ő	0	6	0	2	0	8	0	0	0	0	0	8
13:45 - 14:00	0	ŏ	Õ	Ő	Ō	4	0	1	0	5	0	0	0	0	0	5
14:00 - 14:15	1	0	0	0	1	5	0	2	0	7	0	0	0	0	0	8
14:15 - 14:30	0	0	1	0	1	4	0	2	0	6	0	0	0	0	0	7
14:30 - 14:45	1	0	0	0	1	8	0	0	0	8	0	0	1	0	1	10
14:45 - 15:00	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
15:00 - 15:15	1	0	0	0	1	5	0	2	0	7	0	0	1	0	1	9
15:15 - 15:30	0	0	0	0	0	8	0	2	0	10	0	0	0	0	0	10
15:30 - 15:45	0	0	1	0	1	7	0	1	0	8	0	0	0	0	0	9
15:45 - 16:00	1	0	0	0		6	0	0	0	6	0	0	0	0	0	7
16:00 - 16:15	1	0	0	0	1	5	0	0	0	5	0	0	0	0	0	6
16:15 - 16:30	0	0	0	0	0	8	0	0	0	8	0	0	0	0	0	8
16:30 - 16:45	0	0	0	0		9	0	2	0		0	0	0	0	0	11
16:45 - 17:00 17:00 - 17:15	1 2	0 0	0 0	0 0	1	8 10	0 0	0	0	8 10	0 0	0 0	0	0	0	9 12
17:15 - 17:30	2	0	0	0		7	0	0	0	7	0	0	0	0	0	7
17:30 - 17:45	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
17:45 - 18:00	2	0	0	0	2	2 5	0	0	0	5	0	0	0	0	0	7
TOTAL	43	0	10	1	54	269	0	43	2	314	2	0	3	0	5	373

					Т	RAFFI	C SUF	RVEY A	NALY	'SIS						
CLIENT:	AURE	CON														
SITE:	INTER	RSECT	ION C)F MA	IN ROAE) 467 A	ND M	AIN RC	DAD 2	28						
	40.110			01114		40.4110		0040								
DATE: UNITS:		SIFIE			ONDAY	13 AUG	5051	2012								
APPROACH FROM								WEST	-							TOTAL
NAME								N ROA								
MOVEMENT			EFT TL		TOTAL		-	TRAIG		TOTAL	<u> </u>		GHT 1	1	TOTAL	
TIME 06:00 - 06:15	C 1	Т 0	Н 0	B 0	TOTAL 1	<u>C</u> 3	Т 0	н 0	В 0	TOTAL 3	C 0	T 0	н 0	B 0		MOVEMENT 4
06:15 - 06:30	1	0	0	0	1	3	0	0	0	3	1	0	0	0	1	5
06:30 - 06:45	0	0	0	0	0	7	0	2	0	9	1	0	1	0	2	11
06:45 - 07:00	1	0	3	0	4	9	0	0	0	9	0	0	1	0	1	14
07:00 - 07:15	1	0	0	0	1	8	0	1	0	9	5	0	0	0	5	15
07:15 - 07:30	0	0	0	0	0	6	0	1	1	8	0	0	1	0	1	9
07:30 - 07:45	0	0	0	0	0	6	0	2	0	8	0	0	1	0	1	9
07:45 - 08:00	0	0	0	0	0	4	0	2	0	6	1	0	0	0	1	7
08:00 - 08:15	0	0	1	0	1	3	0	0	0	3	0	0	3	0	3	7
08:15 - 08:30	0	0	1	0	1	6	0	2	0	8	3	0	1	0	4	13
08:30 - 08:45	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
08:45 - 09:00	0	0	0	0	0	1	0	1	1	3	0	0	2	0	2	5
09:00 - 09:15	2	0	0	0	2	10 5	0	3	0 2	13	0	0	3	2	5	20
09:15 - 09:30 09:30 - 09:45	2	0	1 0	0	1	5	0	0	2	7	02	0	1	0	7	15
09:45 - 10:00	0	0	0	0	0	2	0	0	0	2	1	0	2	0	3	5
10:00 - 10:15	0	0	1	0	1	2	0	0	0	2	0	0	0	0	0	3
10:15 - 10:30	0	0	0	0	0	6	Ő	3	0	9	2	0	0	0	2	11
10:30 - 10:45	0	0	0	0	0	4	0	0	0	4	1	0	6	0	7	11
10:45 - 11:00	4	0	0	0	4	4	0	0	0	4	1	0	0	0	1	9
11:00 - 11:15	0	0	0	0	0	2	0	1	0	3	3	0	0	0	3	6
11:15 - 11:30	0	0	0	0	0	6	0	3	0	9	1	0	0	0	1	10
11:30 - 11:45	0	0	0	0	0	6	0	1	0	7	2	0	1	0	3	10
11:45 - 12:00	1	0	0	0	1	1	0	0	0	[1	0	0	2	0	2	4
12:00 - 12:15	0	0	0	0	0	3	0	1	0	4	0	0	2	2	4	8
12:15 - 12:30	1	0	0	0	1	3	0	0	0	3	0	0	0	0	0	4
12:30 - 12:45	0	0	0	0	0	5	0	0	0	5	0	0	1	2	3	8
12:45 - 13:00	1	0	0	0	1	5	0	0	0	5	0	0	1	0	1	76
13:00 - 13:15 13:15 - 13:30	0	0	0	0	0	5 6	0	0	0	8	0	0	0	0	0	8
13:30 - 13:45	1	0	0	0	1	5	0	0	0	5	0	0	1	0	1	7
13:45 - 14:00	0	Ő	0	0	0	5	0	0	0	5	0	0	2	0	2	7
14:00 - 14:15	0	0	0	0	0	8	0	2	0	10	0	0	1	0	1	11
14:15 - 14:30	0	0	0	0	0	4	0	1	1	6	0	0	2	0	2	8
14:30 - 14:45	1	0	0	0	1	8	0	1	0	9	3	0	2	0	5	15
14:45 - 15:00	2	0	0	0	2	0	0	1	0	1	2	0	2	0	4	7
15:00 - 15:15	0	0	0	0	0	6	0	2	0	8	0	0	2	0	2	10
15:15 - 15:30	1	0	0	0	1	8	0	0	0	8	1	0	0	0	1	10
15:30 - 15:45	0	0	0	0	0	8	0	1	0	9	2	0	2	0	4	13
15:45 - 16:00	2	0	2	0	4	2	0	3	0	5	0	0	0	0	0	9
16:00 - 16:15	0	0	3	0	3	9	0	0	0	9	0	0	1	0	1	13
16:15 - 16:30	0	0	0 0	0	0	1 5	0	0	0 0	1 5	3	0	1	0	4	5
16:30 - 16:45 16:45 - 17:00	0 0	0 0	0	0 0		5	0	0	0	5	2 2	0	4	0	6 3	11 6
16:45 - 17:00 17:00 - 17:15	0	0	0	0		3 8	0	0	0	8	2	0	1	0	3	9
17:15 - 17:30	0	0	0	0	0	6	0	0	0	6	2	0	0	0	2	8
17:30 - 17:45	0	0	0	0	0	6	0	0	0	6	1	0	2	0	3	9
17:45 - 18:00	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	4
TOTAL	23	0	12	0	35	232	0	38	5	275	43	0	59	6	108	418

Intersection of P467 / N2 Off ramp (western)

					Т	RAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
CEIEINI.	AUNE															
SITE:	INTER	RSECT	IONC	DFN2	AND MA	IN RC	AD 46	67 (WE	ST O	F INTER	CHAN	GE)				
DATE:	12 HC	OUR CO	OUNT	ON FI	RIDAY 0	3 AUG	UST 2	2012								
UNITS:	CLAS	SIFIED	2													
							NO	SOUT								TOTAL
NAME MOVEMENT		16	EFT TI	IDN				OFF F				PI	GHT Т			ALL
TIME	С	Т	Н	B	TOTAL	С	Т	H	B	TOTAL	С	T	H	B	TOTAL	
06:00 - 06:15	4	0	0	0	4	0	0	0	0	0	1	0	0	0	1	5
06:15 - 06:30	2	0	1	0	3	0	0	0	0	0	0	0	0	0	0	3
06:30 - 06:45	0	0	1	0	1	0	0	0	0	0	3	0	0	0	3	4
06:45 - 07:00	4	0	1	0	5	0	0	0	0	0	1	0	0	0	1	6
07:00 - 07:15	6	0	1	0	7	0	0	0	0	0	3	0	0	0	3	10
07:15 - 07:30	3	0	0	0	3	0	0	0	0	0	1	0	0	0	1	4
07:30 - 07:45	4	0	1	0	5	0	0	0	0	0	2	0	0	0	2	7
07:45 - 08:00	4	0	1	0	5	0	0	0	0	0	3	0	1	0	4	9
08:00 - 08:15	7	0	2	0	9	0	0	0	0	0	3	0	0	0	3	12
08:15 - 08:30	2	0	1	0	3	0	0	0	0	0	3	0	0	0	3	6
08:30 - 08:45 08:45 - 09:00	3	0	0	0	3	0	0	0	0	0	2 7	0	0	0	2	5 10
09:00 - 09:15	5	0	0	0	5	0	0	0	0	0	3	0	1	0	4	9
09:15 - 09:30	13	0	1	0	14	0	0	0	0	0	2	0	0	0	2	16
09:30 - 09:45	4	0	0	0	4	0	0	0	0	0	2	0	0	0	2	6
09:45 - 10:00	5	0	0	0	5	0	0	0	0	0	6	0	0	0	6	11
10:00 - 10:15	4	0	1	0	5	Ő	0	0	0	0	4	0	0	0	4	9
10:15 - 10:30	9	0	1	0	10	0	0	0	0	0	3	0	0	0	3	13
10:30 - 10:45	9	0	0	0	9	0	0	0	0	0	2	0	0	0	2	11
10:45 - 11:00	6	0	0	0	6	0	0	0	0	0	1	0	2	0	3	9
11:00 - 11:15	8	0	0	0	8	0	0	0	0	0	2	0	0	0	2	10
11:15 - 11:30	7	0	0	0	7	0	0	0	0	0	1	0	0	0	1	8
11:30 - 11:45	1	0	1	0	2	0	0	0	0	0	2	0	1	0	3	5
11:45 - 12:00	7	0	1	0	8	0	0	0	0	0	5	0	0	0	5	13
12:00 - 12:15	5	0	0	0	5	0	0	0	0	0	1	0	0	0	1	6
12:15 - 12:30	4	0	1	0	5	0	0	0	0	0	4	0	0	0	4	9
12:30 - 12:45 12:45 - 13:00	1	0	0	0	1	0	0	0	0	0	4	0	1 0	0	5	6 7
13:00 - 13:15	7	0	0	0	4	0	0	0	0	0	3	0	0	0	3	10
13:15 - 13:30	4	0	1	0	5	0	0	0	0	0	2	0	0	0	2	7
13:30 - 13:45	4	0	0	0	4	0	0	0	0	0	4	0	0	0	4	8
13:45 - 14:00	4	0	1	0	5	0	0	0	0	0	2	0	0	0	2	7
14:00 - 14:15	10	0	1	0	11	0	0	0	0	0	3	0	0	0	3	14
14:15 - 14:30	6	0	3	0	9	0	0	0	0	0	3	0	0	0	3	12
14:30 - 14:45	3	0	0	0	3	0	0	0	0	0	3	0	0	0	3	6
14:45 - 15:00	2	0	0	0	2	0	0	0	0	0	2	0	0	0	2	4
15:00 - 15:15	4	0	0	0	4	0	0	0	0	0	4	0	0	0	4	8
15:15 - 15:30	5	0	2	0	7	0	0	0	0	0	7	0	0	0	7	14
15:30 - 15:45	16 9	0	0	0	16 10	0	0	0	0	0	6	0	0	0	6	22 11
15:45 - 16:00 16:00 - 16:15	9 17	0	1	0	10	0	0	0	0	0	1 5	0	0	0	1 5	22
16:15 - 16:30	17	0	0	0	17	0	0	0	0	0	3	0	0	0	3	18
16:30 - 16:45	18	1	2	0	21	0	0	0	0	0	10	0	0	0	10	31
16:45 - 17:00	14	0	0	0	14	0	0	0	0	0	5	0	0	0	5	19
17:00 - 17:15	11	0	0	0	11	0	0	0	0	0	7	0	Ő	0	7	18
17:15 - 17:30	14	0	0	0	14	0	0	0	0	0	7	0	0	0	7	21
17:30 - 17:45	10	0	0	0	10	0	0	0	0	0	9	0	0	0	9	19
17:45 - 18:00	17	0	0	0	17	0	0	0	0	0	6	0	1	0	7	24
TOTAL	323	1	27	0	351	0	0	0	0	0	166	0	7	0	173	524

					٦	RAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
SITE:	INTER	SECT)F N2	AND MA	IN RO	AD 46	67 (WE	ST O	F INTER	CHAN	GE)				
DATE:	12 110				RIDAY 0	2 4110		2012								
UNITS:	CLAS				NDAT U	3 AUG	0012	2012								
APPROACH FROM								EAS	ST.							TOTAL
NAME							MA	IN RO		7						TOTAL
MOVEMENT		LE	EFT TI	JRN				TRAIC				R	IGHT T	URN		ALL
TIME	С	Т	Н	В	TOTAL	С	Т	Н	В	TOTAL	С	Т	H	В	TOTAL	MOVEMENT
06:00 - 06:15	0	0	0	0	0	1	0	0	0	1	5	0	0	0	5	6
06:15 - 06:30	0	0	0	0	0	4	0	0	0	4	_1	0	0	0	1	5
06:30 - 06:45	0	0	0	0	0	5	0	0	0	5	2	0	0	0	2	7
06:45 - 07:00	0	0	0	0	0	2	0	1	0	3	3	0	0	0	3	6
07:00 - 07:15	0	0	0	0	0	10	0	0	1	11	11	1	0	0	12	23
07:15 - 07:30	0	0	0	0	0	6 2	0	0	0	6 2	3 5	0	0	0	3 5	9 7
07:30 - 07:45 07:45 - 08:00	0	0 0	0 0	0 0	0 0	2 6	0	0	0	∠ 6	ວ 5	0	0 0	0	5 5	11
07.45 - 08.00	0	0	0	0	0	5	0	0	0	5	6	0	0	0	6	11
08:15 - 08:30	0	0	0	0	0	2	0	0	0	2	2	0	0	0	2	4
08:30 - 08:45	0	0	0	0	0	3	0	ŏ	0	3	4	0	0	0	4	7
08:45 - 09:00	0	0	0	0	0	4	0	ŏ	0	4	1	0	0	0	1	5
09:00 - 09:15	0	0	0	0	0	2	0	0	0	2	1	0	1	0	2	4
09:15 - 09:30	0	0	0	0	0	8	0	0	Ő	8	2	0	0	0	2	10
09:30 - 09:45	0	0	0	0	0	3	0	0	0	3	2	0	0	0	2	5
09:45 - 10:00	0	0	0	0	0	4	0	0	0	4	1	0	0	0	1	5
10:00 - 10:15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
10:15 - 10:30	0	0	0	0	0	3	0	0	0	3	0	0	0	0	0	3
10:30 - 10:45	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2
10:45 - 11:00	0	0	0	0	0	3	0	0	0	3	2	0	0	0	2	5
11:00 - 11:15	0	0	0	0	0	4	0	0	0	4	0	0	3	0	3	7
11:15 - 11:30	0	0	0	0	0	2	0	0	0	2	3	0	0	0	3	5
11:30 - 11:45	0	0	0	0	0	2	0	2	0	4	1	0	0	0	1	5
11:45 - 12:00	0	0	0	0	0	8	0	1	0	9	3	0	0	0	3	12
12:00 - 12:15	0	0	0	0	0	4	0	0	0	4	3	0	0	0	3	7
12:15 - 12:30	0	0	0	0	0	2	0	0	0	2	1	0	0	0	1	3
12:30 - 12:45	0	0	0	0	0	2	0	0	0	2	0	0	1	0	1	3
12:45 - 13:00	0	0	0	0	0	1	0	2	0	3	0	0	0	0	0	3
13:00 - 13:15	0	0	0	0	0	4	0	1	-	5	2	0	0	0	2	4
13:15 - 13:30 13:30 - 13:45	0	0	0	0	0	2 2	0	0	0	2	2	0	0	0	1	4
13:45 - 14:00	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
14:00 - 14:15	0	0	0	0	0	1	0	0	0	1	0	0	2	0	2	3
14:15 - 14:30	0	0	0	0	0	5	0	0	0	5	0	0	0	0	0	5
14:30 - 14:45	0	0	Ő	0	0	5	0	0	0	5	3	0	0	0	3	8
14:45 - 15:00	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
15:00 - 15:15	0	0	0	0	0	3	0	1	0	4	2	0	0	0	2	6
15:15 - 15:30	0	0	0	0	0	4	0	0	0	4	1	0	0	0	1	5
15:30 - 15:45	0	0	0	0	0	6	0	0	0	6	4	0	0	0	4	10
15:45 - 16:00	0	0	0	0	0	4	0	0	0	4	1	0	0	0	1	5
16:00 - 16:15	0	0	0	0	0	4	0	0	0	4	2	0	1	0	3	7
16:15 - 16:30	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
16:30 - 16:45	0	0	0	0	0	9	0	0	0	9	2	0	0	0	2	11
16:45 - 17:00	0	0	0	0	0	6	0	0	0	6	2	0	0	0	2	8
17:00 - 17:15	0	0	0	0	0	7	0	0	0	7	3	0	0	0	3	10
17:15 - 17:30	0	0	0	0	0	6	0	0	0	6	3	0	0	0	3	9
17:30 - 17:45	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	4
17:45 - 18:00 TOTAL	0	0	0	0	0	9 184	0	0 9	0	9 194	1 98	0	0 9	0	1 108	10 302

					1	[RAFFI	C SUR	VEY A	NALY	'SIS						
CLIENT:	AURE	CON														
SITE:	INTER	RSECT		DF N2	AND MA	IN ROA	D 467	(WES	T OF	INTERC	HANG	E)				
DATE: UNITS:	12 HO CLAS			ON FI	RIDAY 0	3 AUGL	JST 20)12								
APPROACH FROM							MAIN	WEST								TOTAL
NAME MOVEMENT		LE	EFT TI	IRN				ROA FRAIG	-			RI	GHT T			ALL
TIME	С	Т	Н	B	TOTAL	С	Т	Н	В	TOTAL	С	T	Гн	B	TOTAL	MOVEMENT
06:00 - 06:15	1	0	0	0	1	8	0	0	0	8	0	0	0	0	0	9
06:15 - 06:30	2	0	0	0	2	6	0	0	0	6	0	0	0	0	0	8
06:30 - 06:45	3	0	0	0	3	16	0	1	0	17	0	0	0	0	0	20
06:45 - 07:00	6	0	0	0	6	19	0	0	0	19	0	0	0	0	0	25
07:00 - 07:15	8	0	0	0	8	31	0	0	0	31	0	0	0	0	0	39
07:15 - 07:30	7	0	0	1	8	20	0	0	0	20	0	0	0	0	0	28
07:30 - 07:45	4	0	0	0	4	12	0	0	0	12	0	0	0	0	0	16
07:45 - 08:00	6	0	0	0	6	18	0	1	0	19	0	0	0	0	0	25
08:00 - 08:15	2	0	0	0	2	7	0	2	0	9	0	0	0	0	0	11
08:15 - 08:30	1	0	0	0	1	5	0	0	0	5	0	0	0	0	0	6
08:30 - 08:45	4	0	0	0	4	7	0	0	0	7	0	0	0	0	0	11
08:45 - 09:00	1	0	0	0	1	5	0	1	0	6	0	0	0	0	0	7
09:00 - 09:15	0	0	0	0	0	11	0	0	0	11	0	0	0	0	0	11
09:15 - 09:30	1	0	0	0	1	10	0	2	0	12	0	0	0	0	0	13
09:30 - 09:45	3	0	0	0	3	10	0	2	0	12	0	0	0	0	0	15
09:45 - 10:00 10:00 - 10:15	4	0	0	0	4	14 3	0	2	0	16 3	0	0	0	0	0	20
10:15 - 10:30	1	0	0	0	1	13	0	2	0	15	0	0	0	0	0	16
10:30 - 10:45	1	0	0	0	1	10	0	1	0	11	0	0	0	0	0	10
10:45 - 11:00	2	0	0	0	2	2	0	0	0	2	0	0	0	0	0	4
11:00 - 11:15	2	0	1	0	3	9	0	1	0	10	0	0	0	0	0	13
11:15 - 11:30	1	0	0	0	1	12	0	0	0	12	0	0	0	0	0	13
11:30 - 11:45	4	0	0	0	4	7	0	1	0	8	0	0	0	0	0	12
11:45 - 12:00	0	0	0	0	0	5	0	1	0	6	0	0	0	0	0	6
12:00 - 12:15	1	0	0	0	1	7	0	1	0	8	0	0	0	0	0	9
12:15 - 12:30	0	0	0	0	0	8	0	1	0	9	0	0	0	0	0	9
12:30 - 12:45	1	0	0	0	1	10	0	1	0	11	0	0	0	0	0	12
12:45 - 13:00	4	0	0	0	4	5	0	0	0	5	0	0	0	0	0	9
13:00 - 13:15	1	0	0	0	1	19	0	0	0	19	0	0	0	0	0	20
13:15 - 13:30	0	0	0	0	0	10	0	0	0	10	0	0	0	0	0	10
13:30 - 13:45	1	0	0	0	1	13	0	1	0	14	0	0	0	0	0	15
13:45 - 14:00	1	0	0	0	1	4	0	0	0	4	0	0	0	0	0	5
14:00 - 14:15 14:15 - 14:30	0	0	0	0	02	7 13	0	0	0	7 13	0	0	0	0	0	7
14:30 - 14:45	1	0	0	0	 1	9	0	0	0	9	0	0	0	0	0	10
14:45 - 15:00	2	0	0	0	2	9	0	0	0	9	0	0	0	0	0	10
15:00 - 15:15	3	0	0	1	4	10	0	1	0	11	0	0	0	0	0	15
15:15 - 15:30	2	0	0	0	2	11	0	2	0	13	0	0	0	0	0	15
15:30 - 15:45	ō	0	0	0	0	5	0	1	0	6	0	0	0	0	0	6
15:45 - 16:00	1	0	0	0	1	5	0	1	0	6	0	0	0	0	0	7
16:00 - 16:15	1	0	0	0	1	11	0	0	0	11	0	0	0	0	0	12
16:15 - 16:30	3	0	1	0	4	11	0	0	0	11	0	0	0	0	0	15
16:30 - 16:45	5	1	0	0	6	6	0	2	0	8	0	0	0	0	0	14
16:45 - 17:00	0	0	0	0	0	5	0	0	0	5	0	0	0	0	0	5
17:00 - 17:15	2	0	0	0	2	9	0	0	0	9	0	0	0	0	0	11
17:15 - 17:30	3	0	0	0	3	6	0	0	0	6	0	0	0	0	0	9
17:30 - 17:45 17:45 - 18:00	1	0	0	0	1	6 4	0	0	0	6 4	0	0	0	0	0	7
		0	0	0								0		0	0	

Intersection of P467 / N2 On ramp (eastern)

					т	RAFF	IC SU	RVEY	ANAL`	YSIS						
		CON														
CLIENT:	AURE	CON														
SITE:	INTEF	RSECT	ION C	DFN2	AND MA	IN RO	AD 46	67 (EA	ST OF	INTER	CHANC	GE)				
DATE:	12 HC	UR CO	DUNT	ON M	ONDAY	13 AL	IGUST	2012								
UNITS:	CLAS	SIFIED)													
APPROACH FROM	1							NORT								TOTAL
NAME								OFF F								
MOVEMENT TIME	С	T	EFT TU H	JRN B	TOTAL	С	T	TRAIC	В	TOTAL	С		GHT T H	B	τοται	ALL MOVEMENTS
06:00 - 06:15	2	0	0	0	2	0	0	0	0		1	0	0	0	1	3
06:15 - 06:30	3	1	0	0	4	0	0	0	0	0	1	0	0	0	1	5
06:30 - 06:45	0	0	0	0	0	0	0	0	0	Ő	0	0	0	0	0	0
06:45 - 07:00	1	0	0	0	1	0	0	0	0	0	3	0	Ő	0	3	4
07:00 - 07:15	1	0	0	0	1	0	0	0	0	0	3	1	0	1	5	6
07:15 - 07:30	2	0	0	0	2	0	0	0	0	0	1	0	0	0	1	3
07:30 - 07:45	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1	2
07:45 - 08:00	1	0	0	0	1	0	0	0	0	0	2	0	0	0	2	3
08:00 - 08:15	4	0	0	0	4	0	0	0	0	0	4	0	0	0	4	8
08:15 - 08:30	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1	2
08:30 - 08:45	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
08:45 - 09:00	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1	2
09:00 - 09:15 09:15 - 09:30	0	0	0	0	1	0	0	0	0	0	05	0	0	0	5	6
09:30 - 09:45	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
09:45 - 10:00	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
10:00 - 10:15	0	0	0	0	0	0	0	Ő	0	0	Ő	0	0	0	0	0
10:15 - 10:30	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	4
10:30 - 10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45 - 11:00	1	0	0	-0	1	0	0	0	0	0	2	0	0	0	2	3
11:00 - 11:15	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
11:15 - 11:30	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
11:30 - 11:45	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2
11:45 - 12:00	2	0	0	0	2	0	0	0	0	0	2	0	1	0	3	5
12:00 - 12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15 - 12:30	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
12:30 - 12:45 12:45 - 13:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	3
13:00 - 13:15	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2
13:15 - 13:30	1	0	1	0	2	0	0	0	0	0	1	0	0	0	1	3
13:30 - 13:45	1	0	0	0	1	0	0	0	0	0	3	0	0	0	3	4
13:45 - 14:00	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	3
14:00 - 14:15	2	0	0	0	2	0	0	0	0	0	1	0	1	0	2	4
14:15 - 14:30	2	0	0	0	2	0	0	0	0	0	2	0	0	0	2	4
14:30 - 14:45	1	0	0	0	1	0	0	0	0	0	2	0	0	0	2	3
14:45 - 15:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
15:00 - 15:15	1	0	0	0	1	0	0	0	0	0	3	0	0	0	3	4
15:15 - 15:30	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1 7
15:30 - 15:45 15:45 - 16:00	2	0	0	0	2	0	0	0	0	0	5 1	0	0	0	5	3
16:00 - 16:15	1	0	0	0	2	0	0	0	0	0	3	0	0	0	3	4
16:15 - 16:30	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
16:30 - 16:45	3	0	0	0	3	Ő	0	0	0	0 0	2	0	0	0	2	5
16:45 - 17:00	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1	2
17:00 - 17:15	1	0	0	0	1	0	0	0	0	0	8	0	0	0	8	9
17:15 - 17:30	1	0	0	0	1	0	0	0	0	0	5	0	0	0	5	6
17:30 - 17:45	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2
17:45 - 18:00	0	0	0	0	0	0	0	0	0	0	5	0	0	0	5	5
TOTAL	45	1	1	0	47	0	0	0	0	0	89	1	4	1	95	142

					-	TRAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
	AUIL	CON														
SITE:	INTER	RSECT		DF N2	AND MA	IN RO	AD 46	7 (EA	ST OF	INTERC	CHANG	GE)				
DATE:	12 HC	UR C	OUNT	ON M	ONDAY	13 AL	IGUST	2012								
JNITS:	CLAS	SIFIED	D													
APPROACH FROM								EAS								TOTAL
NAME								IN RO		7						
MOVEMENT TIME	С	T	EFT T	B	TOTAL	С	T	TRAIG H	В	TOTAL	С	T	IGHT T	B	TOTAL	ALL MOVEMENT
06:00 - 06:15	3	0	0	0	3	5	0	0	0	5	0	0	0	0		8
06:15 - 06:30	4	0	0	0	4	4	0	0	0	4	0	0	0	0	0	8
06:30 - 06:45	4	0	0	0	4	7	0	0	0	7	0	0	0	0	0	11
06:45 - 07:00	7	0	0	0	7	4	0	1	0	5	0	ŏ	0	0	0	12
07:00 - 07:15	9	0	0	0	9	20	Ő	0	0	20	0	0	0	0	0	29
07:15 - 07:30	8	0	0	0	8	8	0	0	0	8	0	0	0	0	0	16
07:30 - 07:45	12	0	0	0	12	7	0	0	0	7	0	0	0	0	0	19
07:45 - 08:00	4	0	0	0	4	4	0	0	0	4	0	0	0	0	0	8
08:00 - 08:15	1	0	0	0	1	10	0	0	0	10	0	0	0	0	0	11
08:15 - 08:30	4	0	0	0	4	3	0	0	0	3	0	0	0	0	0	7
08:30 - 08:45	2	0	0	0	2	6	0	0	0	6	0	0	0	0	0	8
08:45 - 09:00	2	0	0	0	2	2	0	0	0	2	0	0	0	0	0	4
09:00 - 09:15	3	0	0	0	3	4	0	1	0	5	0	0	0	0	0	8
09:15 - 09:30	3	0	0	0	3	4	0	0	0	4	0	0	0	0	0	7
09:30 - 09:45	3	0	0	0	3	5	0	0	0	5	0	0	0	0	0	8
09:45 - 10:00	2	0	0	0	2	2	0	0	0	2	0	0	0	0	0	4
10:00 - 10:15	1 6	0 0	0	0	1 6	1 6	0	0	0	1	0 0	0	0	0	0	2 12
10:15 - 10:30 10:30 - 10:45	11	0	0	0	11	0	0	0	0	1	0	0 0	0	0	0	12
10:45 - 11:00	4	0	0	0	4	3	0	0	0	3	0	0	0	0	0	7
11:00 - 11:15	0	0	0	0	0	4	0	3	0	7	0	0	0	0	0	7
11:15 - 11:30	0	0	Ő	0	0	1	Ő	0	Ő		0	0	0	0	0	1
11:30 - 11:45	1	0	0	0	1	3	0	1	0	4	0	0	0	0	0	5
11:45 - 12:00	3	0	0	0	3	7	0	0	0	7	0	0	0	0	0	10
12:00 - 12:15	1	0	0	0	1	7	0	0	0	7	0	0	0	0	0	8
12:15 - 12:30	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
12:30 - 12:45	4	0	0	0	4	2	0	1	0	3	0	0	0	0	0	7
12:45 - 13:00	3	0	0	0	3	0	0	1	0	1	0	0	0	0	0	4
13:00 - 13:15	1	0	0	0	1	1	0	1	0	2	0	0	0	0	0	3
13:15 - 13:30	1	0	0	0	1	3	0	0	0	3	0	0	0	0	0	4
13:30 - 13:45	4	0	0	0	4	4	0	1	0	5	0	0	0	0	0	9
13:45 - 14:00	3	0	0	0	3	4	0	0	0	4	0	0	0	0	0	7
14:00 - 14:15	0	0	0	0	0	2	0	0	0	2 4	0	0	0	0	0	2
14:15 - 14:30 14:30 - 14:45	3	0	0	0	3	6	0	0	0	4	0	0	0	0	0	7
14:45 - 15:00	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	4
15:00 - 15:15	3	0	0	Ő	3	3	0	1	0	4	0	0	0	0	0	7
15:15 - 15:30	3	0	0	0	3	3	0	0	0	3	0	0	0	0	0	6
15:30 - 15:45	4	0	0	0	4	5	0	0	0	5	0	0	0	0	0	9
15:45 - 16:00	4	0	0	0	4	4	0	0	0	4	0	0	0	0	0	8
16:00 - 16:15	5	0	0	0	5	3	0	1	0	4	0	0	0	0	0	9
16:15 - 16:30	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	2
16:30 - 16:45	2	0	0	0	2	9	0	0	0	9	0	0	0	0	0	11
16:45 - 17:00	1	0	0	0	1	7	0	0	0	7	0	0	0	0	0	8
17:00 - 17:15	1	0	0	0	1	2	0	0	0	2	0	0	0	0	0	3
17:15 - 17:30	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	4
17:30 - 17:45	2	0	0	0	2	2	0	0	0	2	0	0	0	0	0	4
17:45 - 18:00	4	0	0	0	4 148	5 208	0	0 12	0	5 220	0	0	0	0	0	9 368

					٦	TRAFFI	C SUR	VEY A	NALY	ŚIŚ						
CLIENT:	AURE	CON														
SITE:	INTER	RSECT		DF N2	AND MA	IN ROA	D 467	(EAS	T OF	INTERCH	HANGE	E)				
DATE:	40.10					10 410		040								
UNITS:	CLAS				ONDAY	13 AUG	50512	2012								
	1							WEST								TOTAL
NAME MOVEMENT		11	EFT T	IRN				I ROA FRAIG				RI	GHT T			ALL
TIME	С	Т	<u>- н</u>	B	TOTAL	С	Т	H	В	TOTAL	С	T	Гн	B	ΤΟΤΑΙ	MOVEMENT
06:00 - 06:15	0	0	0	0	0	4	0	0	0	4	4	0	0	0	4	8
06:15 - 06:30	0	0	0	0	0	0	0	0	0	0	7	0	0	0	7	7
06:30 - 06:45	0	0	0	0	0	4	0	0	0	4	14	0	1	0	15	19
06:45 - 07:00	0	0	0	0	0	8	0	0	0	8	13	0	0	0	13	21
07:00 - 07:15	0	0	0	0	0	8	0	0	0	8	26	0	0	0	26	34
07:15 - 07:30	0	0	0	0	0	2	0	0	0	2	19	0	0	0	19	21
07:30 - 07:45	0	0	0	0	0	4	0	0	0	4	12	0	0	0	12	16
07:45 - 08:00	0	0	0	0	0	6	0	1	0	7	10	0	1	0	11	18
08:00 - 08:15	0	0	0	0	0	4	0	0	0	4	10	0	2	0	12	16
08:15 - 08:30	0	0	0	0	0	2	0	0	0	2	5	0	0	0	5	7
08:30 - 08:45	0	0	0	0	0	2	0	0	0	2	7	0	0	0	7	9
08:45 - 09:00	0	0	0	0	0	5	0	0	0	5	8	0	1	0	9	14
09:00 - 09:15	0	0	0	0	0	2	0	1	0	3	9	0	0	0	9	12
09:15 - 09:30	0	0	0	0	0	6	0	0	0	6	8 4	0	2	0	10	16
09:30 - 09:45	0	0	0	0	0	2 5	0	0	0	2	4	0	2	0	6 12	8 18
09:45 - 10:00 10:00 - 10:15	0	0	0	0	0	э 3	0	0	0	3	3	0	0	0	3	6
10:15 - 10:30	0	0	0	0	0	6	0	1	0	7	10	0	2	0	12	19
10:30 - 10:45	0	0	0	0	0	7	0	0	0	7	7	0	0	0	7	14
10:45 - 11:00	0	0	0	0	0	5	0	2	0	7	4	0	0	0	4	11
11:00 - 11:15	0	0	0	0	0	3	0	0	0	3	10	0	1	0	11	14
11:15 - 11:30	0	0	0	0	0	0	0	0	0	0	7	0	1	0	8	8
11:30 - 11:45	0	0	0	0	0	4	0	1	0	5	9	0	0	0	9	14
11:45 - 12:00	0	0	0	0	0	7	0	1	0	8	2	0	1	0	3	11
12:00 - 12:15	0	0	0	0	0	8	0	0	0	8	8	0	0	0	8	16
12:15 - 12:30	0	0	0	0	0	2	0	1	0	3	4	0	1	0	5	8
12:30 - 12:45	0	0	0	0	0	4	0	1	0	5	4	0	0	0	4	9
12:45 - 13:00	0	0	0	0	0	5	0	0	0	5	1	0	0	0	1	6
13:00 - 13:15	0	0	0	0	0	4	0	0	0	4	12	0	0	0	12	16
13:15 - 13:30 13:30 - 13:45	0	0	0	0	0	4	0	0	0	4	14	0	0	0	14	18
13:45 - 14:00	0	0 0	0	0	0	3 2	0	0	0	2	10 5	0	0	0	11 5	14
14:00 - 14:15	0	0	0	0	0	6	0	0	0	6	4	0	0	0	4	10
14:15 - 14:30	0	0	0	0	0	5	0	0	0	5	9	0	0	0	9	14
14:30 - 14:45	0	0	ŏ	0	0	3	0	0	0	3	9	0	0	0	9	12
14:45 - 15:00	0	0	0	0	0	3	0	0	0	3	9	0	0	0	9	12
15:00 - 15:15	0	0	0	0	0	7	0	0	0	7	8	0	0	0	8	15
15:15 - 15:30	0	0	0	0	0	5	0	0	0	5	12	0	2	0	14	19
15:30 - 15:45	0	0	0	0	0	10	0	0	0	10	9	0	1	0	10	20
15:45 - 16:00	0	0	0	0	0	4	0	0	0	4	10	0	1	0	11	15
16:00 - 16:15	0	0	0	0	0	7	0	0	0	7	4	0	0	0	4	11
16:15 - 16:30	0	0	0	0	0	8	0	0	0	8	9	0	0	0	9	17
16:30 - 16:45	0	0	0	0	0	3	0	2	0	5	11	0	0	0	11	16
16:45 - 17:00	0	0	0	0	0	2	0	0	0	2	10	0	0	0	10	12
17:00 - 17:15	0	0	0	0	0	4	0	0	0	4	10	0	0	0	10	14
17:15 - 17:30	0	0	0	0	0	1	0	0	0	1	9	0	0	0	9	10
17:30 - 17:45	0	0	0	0	0	0	0	0	0	0	11	0	0	0	11	11
17:45 - 18:00 TOTAL	0	0	0	0	0	2 201	0	0 12	0	2 213	10 421	0	0 21	0	10 442	12 655

Intersection of P474 / P228

					Т	RAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE															
CLIENT.	AURE	JON														
SITE:	INTER	SECT		DF MA	IN ROAL	D 228		1AIN R	OAD	474						
DATE:	12 HO	UR C	OUNT	ON M	ONDAY	13 AL	JGUST	2012								
UNITS:	CLASS	SIFIED	C													
APPROACH FROM	Л							NORT								TOTAL
NAME								N ROA		8						
MOVEMENT TIME	С	T	EFT TU	JRN B	TOTAL	С	T	TRAIC	В	TOTAL	С	T	<u>GHT T</u> Н	B	TOTAL	ALL MOVEMENTS
06:00 - 06:15	1	0	0	0	101AL	0	0	0	0		8	0	0	0	8	9
06:15 - 06:30	0	0	0	0	0	0	0	0	0	0	13	0	0	0	13	13
06:30 - 06:45	1	0	0	0	1	0	0	0	0	0	20	1	1	0	22	23
06:45 - 07:00	2	0	0	1	3	0	0	0	0	0	35	1	0	0	36	39
07:00 - 07:15	1	0	0	0	1	0	0	0	0	0	32	0	0	0	32	33
07:15 - 07:30	3	0	0	0	3	0	0	0	0	0	25	0	0	0	25	28
07:30 - 07:45	4	0	0	0	4	0	0	0	0	0	33	0	2	0	35	39
07:45 - 08:00	3	0	0	0	3	0	0	0	0	0	26	0	6	0	32	35
08:00 - 08:15	1	0	0	0	1	0	0	0	0	0	11	0	2	0	13	14
08:15 - 08:30	2	0	0	0	2	0	0	0	0	0	16 14	0	0	0	16 14	18 17
08:30 - 08:45 08:45 - 09:00	0	0	0	0	0	0	0	0	0	0	22	0	1	0	23	23
09:00 - 09:15	2	0	0	0	2	0	0	0	0	0	5	0	6	0	11	13
09:15 - 09:30	1	0	0	0	1	0	0	0	0	Ő	6	0	1	1	8	9
09:30 - 09:45	2	0	0	0	2	0	0	0	0	0	11	0	0	0	11	13
09:45 - 10:00	1	0	0	0	1	0	0	0	0	0	11	0	0	0	11	12
10:00 - 10:15	1	0	0	0	1	0	0	0	0	0	9	0	1	0	10	11
10:15 - 10:30	1	0	0	0	1	0	0	0	0	0	11	0	3	0	14	15
10:30 - 10:45	1	0	0	0	1	0	0	0	0	0	7	0	4	0	11	12
10:45 - 11:00	2	0	0	-0-	2	0	0	0	0	0	17	0	0	0	17	19
11:00 - 11:15	0	0	0	0	0	0	0	0	0	0	12	0	0	0	12	12
11:15 - 11:30		0	0	0	1	0	0	0	0	0	9	0	3	0	12	13
11:30 - 11:45 11:45 - 12:00	1	0	0	0	1	0	0	0	0	0	9 13	0	1	0	10 20	11 21
12:00 - 12:15	1	0	0	0	1	0	0	0	0	0	13	0	0	0	14	15
12:15 - 12:30	1	0	0	0	1	0	0	0	0	0	7	0	2	0	9	10
12:30 - 12:45	1	0	0	0	1	0	0	0	0	0	14	0	1	0	15	16
12:45 - 13:00	2	0	0	0	2	0	0	0	0	0	10	0	1	0	11	13
13:00 - 13:15	4	0	0	0	4	0	0	0	0	0	6	0	0	0	6	10
13:15 - 13:30	0	0	0	0	0	0	0	0	0	0	12	0	3	0	15	15
13:30 - 13:45	3	0	0	0	3	0	0	0	0	0	5	0	2	0	7	10
13:45 - 14:00	1	0	0	0	1	0	0	0	0	0	18	0	3	0	21	22
14:00 - 14:15	0	0	1	0	1	0	0	0	0	0	7	0	1	0	8	9
14:15 - 14:30 14:30 - 14:45	2	0	0	0	2 0	0 0	0	0	0	0	9 7	0	3	0	12 9	14 9
14:45 - 15:00	2	0	0	0	2	0	0	0	0	0	10	0	2	0	9 12	9 14
15:00 - 15:15	0	0	0	0	0	0	0	0	0	0	9	0	1	0	10	14
15:15 - 15:30	3	0	0	0	3	0	0	0	0	0	9	0	2	0	11	14
15:30 - 15:45	0	0	0	0	0	0	0	0	0	0	11	0	3	0	14	14
15:45 - 16:00	0	0	1	0	1	0	0	0	0	0	6	0	2	0	8	9
16:00 - 16:15	1	0	0	0	1	0	0	0	0	0	14	0	2	0	16	17
16:15 - 16:30	1	0	0	0	1	0	0	0	0	0	19	1	2	1	23	24
16:30 - 16:45	0	0	0	0	0	0	0	0	0	0	15	0	2	0	17	17
16:45 - 17:00	0	0	0	0	0	0	0	0	0	0	12	1	2	0	15	15
17:00 - 17:15	2	0	1	0	3	0	0	0	0	0	17	0	0	0	17	20
17:15 - 17:30	2	0	0	0	2	0	0	0	0	0	12	0	0	0	12	14
17:30 - 17:45 17:45 - 18:00	0	0	0	0	0	0	0	0	0	0	12 19	0	0	0	12 19	12 19
TOTAL	U	U	6	2	65	0	0	0	0	0	649	4	74	2	729	794

					-	TRAFF	IC SU	RVEY	ANAL	YSIS						
CLIENT:	AURE	CON														
	AORE															
SITE:	INTEF	RSECT	ION C	OF MA	IN ROAI	D 228 /	and N	/IAIN F	ROAD	474						
DATE:	12 HC	UR C	OUNT	ON M	ONDAY	13 AU	IGUST	2012								
UNITS:		SIFIED														
APPROACH FROM								EAS								TOTAL
NAME								IN RO		'4	-					
MOVEMENT TIME	С	T	EFT TI	B	TOTAL	С	T	TRAIC	В	TOTAL	С	T	<u>IGHT T</u> Н	B	TOTAL	ALL MOVEMENT
06:00 - 06:15	0	0	0	0		6	0	0	0	6	0	0	0	0		6
06:15 - 06:30	0	0	0	0	0	17	0	0	0	17	1	0	0	0	1	18
06:30 - 06:45	0	0	0	0	0	23	0	0	0	23	1	0	0	0	1	24
06:45 - 07:00	0	0	0	0	0	34	0	0	0	34	1	Ő	ŏ	0	1	35
07:00 - 07:15	0	0 0	Ő	0	0 0	50	0	0	1	51	0	0	0	0	0	51
07:15 - 07:30	0	0	0	0	0	36	0	3	0	39	2	0	1	0	3	42
07:30 - 07:45	0	0	0	0	0	52	0	0	0	52	0	0	0	0	0	52
07:45 - 08:00	0	0	0	0	0	31	0	0	0	31	0	0	0	0	0	31
08:00 - 08:15	0	0	0	0	0	35	0	1	0	36	1	0	0	0	1	37
08:15 - 08:30	0	0	0	0	0	30	0	0	0	30	1	0	0	0	1	31
08:30 - 08:45	0	0	0	0	0	27	0	2	0	29	1	0	0	0	1	30
08:45 - 09:00	0	0	0	0	0	17	0	3	0	20	3	0	0	0	3	23
09:00 - 09:15	0	0	0	0	0	22	0	2	0	24	0	0	0	0	0	24
09:15 - 09:30	0	0	0	0	0	19	0	2	0	21	1	0	0	0	1	22
09:30 - 09:45	0	0	0	0	0	20	0	0	0	20	2	0	0	0	2	22
09:45 - 10:00	0	0	0	0	0	18	0	3	0	21	1	0	0	0	1	22
10:00 - 10:15	0	0	0	0	0	20	0	2	0	22	1	0	0	0	1	23
10:15 - 10:30 10:30 - 10:45	0	0	0	0	0	24 17	1	3	0	28 17	1	0	0	0	1	29 18
10:45 - 11:00	0	0	0	0	0	17	0	2	0	19	1	0	0	0	1	20
11:00 - 11:15	0	0	0	0	0	18	0	3	0	21	0	0	0	0	0	20
11:15 - 11:30	0	0	0	0	0	23	ŏ	1	0	24	0	0	0	0	0	24
11:30 - 11:45	0	0	0	Ő	Ő	15	0	0	0	15	3	Ő	0	0	3	18
11:45 - 12:00	0	0	0	0	Ő	26	0	1	0	27	2	0	1	0	3	30
12:00 - 12:15	0	0	0	0	0	17	0	0	0	17	3	0	1	0	4	21
12:15 - 12:30	0	0	0	0	0	18	0	4	0	22	0	0	0	0	0	22
12:30 - 12:45	0	0	0	0	0	30	0	1	0	31	0	0	0	0	0	31
12:45 - 13:00	0	0	0	0	0	23	0	3	0	26	2	0	0	0	2	28
13:00 - 13:15	0	0	0	0	0	15	0	2	0	17	0	0	0	0	0	17
13:15 - 13:30	0	0	0	0	0	18	0	0	0	18	0	0	0	0	0	18
13:30 - 13:45	0	0	0	0	0	19	0	2	0	21	0	0	0	0	0	21
13:45 - 14:00	0	0	0	0	0	25	0	2	0	27	1	0	0	0	1	28
14:00 - 14:15	0	0	0	0	0	19	0	4	0	23	2	0	1	0	3	26
14:15 - 14:30	0	0	0	0	0	15	0	3	0	18	0	0	0	0	0	18
14:30 - 14:45 14:45 - 15:00	0	0	0	0	0	14	0	1	0	15	0	0	0	0	0	15
14:45 - 15:00	0	0	0	0	0	25 27	0	0	0	25 27	1 0	0	0	0	0	26 27
15:15 - 15:30	0	0	0	0	0	11	0	3	0	14	1	0	0	0	1	15
15:30 - 15:45	0	0	0	0	0	21	0	0	0	21	2	0	0	0	2	23
15:45 - 16:00	0	0	0	0	0	26	0	2	0	28	1	0	1	0	2	30
16:00 - 16:15	Ő	0	0	0	0	25	0	1	0	26	0	0	0	0	0	26
16:15 - 16:30	0	0	0	0	0	26	0	2	0	28	2	0	0	0	2	30
16:30 - 16:45	0	0	0	0	0	22	0	2	0	24	1	0	0	0	1	25
16:45 - 17:00	0	Õ	Ő	0	0	10	Ő	1	Ő	11	2	0	Ő	0	2	13
17:00 - 17:15	0	0	0	0	0	14	0	0	0	14	3	0	0	0	3	17
17:15 - 17:30	0	0	0	0	0	9	0	0	0	9	2	0	0	0	2	11
17:30 - 17:45	0	0	0	0	0	13	0	0	0	13	0	0	0	0	0	13
17:45 - 18:00	0	0	0	0	0	3	0	0	0	3	2	0	0	0	2	5
TOTAL	0	0	0	0	0	1042	1	61	1	1105	49	0	5	0	54	1159

•

					1	RAFFI	C SUR	RVEY A	NALY	'SIS						
CLIENT:	AURE	CON														
SITE:	INTEF	RSECT	FION C	DF MA	IN ROAE	D 228 A	ND M	AIN RC	DAD 4	74						
DATE:	12 HC	OUR C	OUNT	ON M	ONDAY	13 AUG	UST :	2012								
UNITS:		SIFIEI		0	0.12711											
APPROACH FROM								WEST								TOTAL
NAME MOVEMENT			EFT TI	IDN				<u>N ROA</u> TRAIG				DÍ	GHT T			ALL
TIME	С	Т		B	TOTAL	С	Т		В	TOTAL	С		Гн	B	TOTAL	
06:00 - 06:15	2	0	0	0	2	6	0	0	0	6	0	0	0	0	0	8
06:15 - 06:30	2	0	0	0	2	10	1	1	0	12	0	0	0	0	0	14
06:30 - 06:45	5	2	0	0	7	8	0	0	0	8	0	0	0	0	0	15
06:45 - 07:00	4	0	0	1	5	24	0	0	0	24	0	0	0	0	0	29
07:00 - 07:15	11	0	6	0	17	26	0	0	0	26	0	0	0	0	0	43
07:15 - 07:30	9	0	0	0	9	23	0	2	0	25	0	0	0	0	0	34
07:30 - 07:45 07:45 - 08:00	15	0	0	0 0	15 11	23 28	0	2	0 0	25 28	0 0	0	0	0	0	40 39
07:45 - 08:00 08:00 - 08:15	10	0	4	0	14	28 36	0 0	0	0	28 36	0	0	0	0	0	39 50
08:15 - 08:30	15	0	2	0	14	20	0	4	0	24	0	0	0	0	0	41
08:30 - 08:45	11	0	2	1	14	25	0	0	0	25	0	0	0	0	0 0	39
08:45 - 09:00	10	0	0	0	10	18	0	1 1	Ő	19	Õ	0	0	0	0	29
09:00 - 09:15	7	0	0	0	7	17	0	1	0	18	0	0	0	0	0	25
09:15 - 09:30	12	0	1	0	13	23	0	2	0	25	0	0	0	0	0	38
09:30 - 09:45	12	0	4	1	17	16	0	1	0	17	0	0	0	0	0	34
09:45 - 10:00	10	0	2	0	12	17	0	4	0	21	0	0	0	0	0	33
10:00 - 10:15	6	0	1	0	7	18	0	2	0	20	0	0	0	0	0	27
10:15 - 10:30	17	0	2	0	19	16	0	3	0	19	0	0	0	0	0	38
10:30 - 10:45	12	0	2	0	14	13	0	0	0	13	0	0	0	0	0	27
10:45 - 11:00	15	0	4	0	19	20	0	2	0	22	0	0	0	0	0	41
11:00 - 11:15	9	0	4	0	13	8	0	2	0	10	0	0	0	0	0	23
11:15 - 11:30 11:30 - 11:45	12	0	3 0	0	15 13	14 29	0 0	1 2	0	15 31	0	0	0	0	0	30 44
11:45 - 12:00	12	0	0	0	13	14	0	4	0	18	0	0	0	0	0	30
12:00 - 12:15	12	0	1	0	13	17	0	2	0	19	0	0	0	0	0	30
12:15 - 12:30	10	0	2	0	12	21	0	Ō	0	21	0	0	0	0	0	33
12:30 - 12:45	12	0	1	0	13	23	0	2	0	25	0	0	0	0	0	38
12:45 - 13:00	12	0	3	0	15	22	0	0	0	22	0	0	0	0	0	37
13:00 - 13:15	4	0	4	0	8	22	0	2	0	24	0	0	0	0	0	32
13:15 - 13:30	12	0	3	0	15	19	0	2	0	21	0	0	0	0	0	36
13:30 - 13:45	10	0	1	0	11	24	0	2	0	26	0	0	0	0	0	37
13:45 - 14:00	14	0	1	0	15	14	0	0	0	14	0	0	0	0	0	29
14:00 - 14:15	8	0	4	0	12	18	0	3	0	21	0	0	0	0	0	33
14:15 - 14:30 14:30 - 14:45	11	0	2	0	13 14	18 24	0	0	0	18 26	0	0	0	0	0	31 40
14:45 - 15:00	14	0	2	0	14	24 21	0	2	0	20	0	0	0	0	0	40
15:00 - 15:15	7	0	5	0	13	10	0	2	0	12	0	0	0	0	0	24
15:15 - 15:30	10	0	1	0	11	29	0	2	0	31	0	0	0	0	0	42
15:30 - 15:45	10	0	2	0	12	21	0	1	0	22	0	0	0	0	0	34
15:45 - 16:00	14	0	2	0	16	32	0	3	0	35	0	0	0	0	0	51
16:00 - 16:15	28	0	2	0	30	38	0	2	0	40	0	0	0	0	0	70
16:15 - 16:30	25	1	1	1	28	32	0	1	0	33	0	0	0	0	0	61
16:30 - 16:45	25	1	1	0	27	33	0	0	0	33	0	0	0	0	0	60
16:45 - 17:00	23	0	0	0	23	34	0	0	0	34	0	0	0	0	0	57
17:00 - 17:15	35	0	2	0	37	36	0	1	0	37	0	0	0	0	0	74
17:15 - 17:30	22	0	0	0	22	20	0	0	0	20	0	0	0	0	0	42
17:30 - 17:45	32	0	0	0	32	24	0	0	0	24	0	0	0	0	0	56
17:45 - 18:00 TOTAL	11 620	0 4	0 77	0 4	11 705	21 1025	1 2	0 61	0	22 1088	0	0	0	0	0	33 1793

Traffic Counts on N2 under P228 Bridge

SITE:	TWO W	AY CO	UNT O	N N2 (JNDER P	228 BR	IDGE			LANE 1	SLOW LANE
DATE:	12 HOUR	R COU	NT ON	THUR	SDAY 16) JANUA	RY 20	14			
UNITS:	CLASSI										
NAME					N2						TOTAL
MOVEMENT	NC	RTHB	DUND	(LANE	1)	NC	RTHB	OUND	(LAN	E 2)	BOTH
TIME	С	Т	Н	В	TOTAL	С	Т	Н	B	TÓTAL	DIRECTIONS
06:00 - 06:15	39	0	16	0	55	33	0	4	0	37	92
06:15 - 06:30	101	5	32	2	140	88	1	4	0	93	233
06:30 - 06:45	115	3	16	2	136	91	0	3	0	94	230
06:45 - 07:00	121	13	28	0	162	125	1	0	0	126	288
07:00 - 07:15	84	4	23	0	111	117	1	1	0	119	230
07:15 - 07:30	81	2	12	0	95	73	0	1	0	74	169
07:30 - 07:45	99	2	21	0	122	117	2	1	0	120	242
07:45 - 08:00	146	4	33	0	183	139	1	2	0	142	325
08:00 - 08:15	69	5	8	0	82	38	0	1	0	39	121
08:15 - 08:30	71	3	12	2	88	51	0	1	0	52	140
08:30 - 08:45	110	9	30	2	151	107	2	1	0	110	261
08:45 - 09:00	70	1	18	0	89	42	0	1	0	43	132
09:00 - 09:15	103	2	16	0	121	86	1	0	0	87	208
09:15 - 09:30	96	5	24	0	125	84	2	2	0	88	213
09:30 - 09:45	97	6	18	2	123	71	2	1	0	74	197
09:45 - 10:00	65	3	15	1	84	63	0	2	0	65	149
10:00 - 10:15	79	2	18	2	101	75	0	1	0	76	177
10:15 - 10:30	97	6	16	0	119	65	0	0	0	65	184
10:30 - 10:45	92	6	30	1	129	68	0	0	1	69	198
10:45 - 11:00	71	5	22	1	99	42	3	2	0	47	146
11:00 - 11:15	51	10	20	0	81	25	0	1	0	26	107
11:15 - 11:30	60 22	5 2	19 12	0	84	52	2	6 1	0	60 28	144
11:30 - 11:45		2 4	12	0	36	27 24	0	0	0	-	64
11:45 - 12:00 12:00 - 12:15	33 31	4	18	3	59 51	24 35	3	0	0	24 38	83 89
12:15 - 12:30	79	8	10	0	104	40	1	0	0	41	145
12:30 - 12:45	112	10	36	4	162	59	0	1	1	61	223
12:45 - 13:00	56	2	13	0	71	25	0	1	0	26	97
13:00 - 13:15	72	10	23	0	105	49	2	0	0	51	156
13:15 - 13:30	77	8	22	0	100	40	1	1	0	42	149
13:30 - 13:45	99	5	16	1	121	33	1		0	35	156
13:45 - 14:00	82	12	24	0	118	46	3	3	0	52	170
14:00 - 14:15	48	4	13	3	68	39	3	0	0	42	110
14:15 - 14:30	60	2	16	2	80	35	1	1	0	37	117
14:30 - 14:45	50	1	5	1	57	39	2	1	0	42	99
14:45 - 15:00	76	8	19	2	105	30	1	0	0	31	136
15:00 - 15:15	103	9	8	0	120	37	1	0	0	38	158
15:15 - 15:30	108	8	16	0	132	56	1	0	1	58	190
15:30 - 15:45	138	9	17	1	165	60	3	2	0	65	230
15:45 - 16:00	72	10	11	1	94	37	0	0	0	37	131
16:00 - 16:15	108	13	17	1	139	68	3	0	0	71	210
16:15 - 16:30	112	9	11	1	133	38	2	0	0	40	173
16:30 - 16:45	113	10	13	0	136	95	0	0	1	96	232
16:45 - 17:00	105	7	3	2	117	84	1	0	0	85	202
17:00 - 17:15	99	5	13	1	118	69	1	1	0	71	189
17:15 - 17:30	126	9	11	0	146	67	1	0	1	69	215
17:30 - 17:45	124	7	11	0	142	72	0	1	0	73	215
17:45 - 18:00	74	3	12	1	90	51	2	0	0	53	143
TOTAL	4096	277	843	40	5256	2907	51	49	5	3012	8268

SITE:	TWO W	AY CO	UNT O	N N2 (JNDER P	228 BR	IDGE			LANE 1	SLOW LANE
DATE:	12 HOU			THIIP	SDAY 16	3. JANI 14	ARY 20	14			
UNITS:	CLASSI					JANOF		14			
	01.000										
NAME					N2						TOTAL
MOVEMENT	SC	UTHB	OUND	(LANE	1)	SC	UTHB	OUND	(LAN	E 2)	BOTH
TIME	С	Т	Н	В	TOTAL	С	Т	Н	В	TÓTAL	DIRECTIONS
06:00 - 06:15	45	2	4	2	53	17	0	0	0	17	70
06:15 - 06:30	72	9	16	2	99	69	0	0	0	69	168
06:30 - 06:45	93	5	11	0	109	72	2	0	0	74	183
06:45 - 07:00	109	3	15	3	130	91	1	0	0	92	222
07:00 - 07:15	80	3	15	2	100	59	1	0	0	60	160
07:15 - 07:30	56	1	3	1	61	29	1	0	0	30	91
07:30 - 07:45	81	5	13	1	100	60	2	0	0	62	162
07:45 - 08:00	96	6	16	0	118	48	2	1	0	51	169
08:00 - 08:15	41	1	10	1	53	30	0	0	0	30	83
08:15 - 08:30	57	1	11	1	70	31	4	0	0	35	105
08:30 - 08:45	73	1	15	2	91	50	2	0	1	53	144
08:45 - 09:00	79	1	5	3	88	40	1	0	0	41	129
09:00 - 09:15	46	2	7	0	55	21	0	0	0	21	76
09:15 - 09:30	91	2	15	1	109	26	2	0	0	28	137
09:30 - 09:45	62	2	19	0	83	43	1	0	0	44	127
09:45 - 10:00	80	3	12	0	95 92	31	1	0	0	32 51	127
10:00 - 10:15 10:15 - 10:30	67 88	5 2	19 16	2	92 108	47 31	2	0	0	33	143 141
10:30 - 10:45	49	4	26	2 1	80	56	1	0	1	58	141
10:45 - 11:00	33	4	6	0	41	15	0	0	0	15	56
11:00 - 11:15	54	1	13	1	69	41	1	1	0	43	112
11:15 - 11:30	58	3	13	2	76	36	4	0	0	40	116
11:30 - 11:45	57	2	9	0	68	36	4	0	0	40	108
11:45 - 12:00	74	5	11	1	91	48	3	1	0	52	143
12:00 - 12:15	67	3	15	2	87	48	4	0	0	52	139
12:15 - 12:30	61	1	13	0	75	38	1	1	0	40	115
12:30 - 12:45	54	5	20	1	80	53	0	0	0	53	133
12:45 - 13:00	41	1	9	1	52	27	1	0	0	28	80
13:00 - 13:15	59	0	16	1	76	25	2	0	0	27	103
13:15 - 13:30	55	2	30	1	88	63	2	0	2	67	155
13:30 - 13:45	34	6	24	0	64	43	1	1	0	45	109
13:45 - 14:00	84	3	27	1	115	82	4	0	0	86	201
14:00 - 14:15	47	1	16	1	65	24	2	0	0	26	91
14:15 - 14:30	79	3	28	0	110	50	2	1	0	53	163
14:30 - 14:45	58	2	18	2	80	41	1	2	0	44	124
14:45 - 15:00	46	4	16	0	66	66	3	2	0	71	137
15:00 - 15:15	84	1	32	2	119	90	4	0	0	94	213
15:15 - 15:30	59	1	21	1	82	73	2	1	1	77	159
15:30 - 15:45	45	2	25	2	74	91	2	2	0	95	169
15:45 - 16:00	75	3	33	1	112	86	5	1	1	93	205
16:00 - 16:15	58	5	35	1	99	64	3	2	0	69	168
16:15 - 16:30	77	2	21	1	101	77	2	0	0	79	180
16:30 - 16:45	39	2	20	1	62	56	1	3	1	61	123
16:45 - 17:00	76	3	14	0	93	56	4	2	0	62	155
17:00 - 17:15	57	4	17	1	79	78	1	1	0	80	159
17:15 - 17:30	45	2	29	0	76	52	2	4	0	58	134
17:30 - 17:45	54	3	19	1	77	66	3	2	0	71	148
<u>17:45 - 18:00</u> TOTAL	60 3055	2 132	16 814	0 48	78 4049	35 2411	2 92	1 30	0	38 2540	116 6589

Existing Traffic flows – Movement Summaries

P330 / N2 On-ramp (western) AM

Mover	nent Pe	rformance	- Vehio	cles							
Mov ID	Turn	Demand	HV D	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Off ramp										
1	L	87	0.0	1.456	899.3	LOS F	96.0	671.7	1.00	8.16	2.3
3	R	136	0.0	1.460	899.2	LOS F	96.0	671.7	1.00	5.51	2.3
Approa	ch	223	0.0	1.457	899.2	LOS F	96.0	671.7	1.00	6.54	2.3
East: P	330										
5	Т	280	0.0	0.144	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R	141	0.0	0.295	16.6	LOS C	1.5	10.4	0.74	0.97	41.1
Approa	ch	421	0.0	0.295	5.6	LOS C	1.5	10.4	0.25	0.32	52.0
West: F	P330										
10	L	17	0.0	0.421	8.2	LOS A	0.0	0.0	0.00	1.08	49.0
11	Т	809	0.0	0.424	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	826	0.0	0.424	0.2	LOS A	0.0	0.0	0.00	0.02	59.7
All Veh	icles	1471	0.0	1.457	138.2	NA	96.0	671.7	0.22	1.10	12.5

P330 / N2 On-ramp (western) PM

Movem	nent Pe	rformance	e - Vehio	cles							
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: C	Dnramp										
1	L	163	0.0	1.569	1077.9	LOS F	202.9	1420.5	1.00	12.21	2.0
3	R	259	0.0	1.569	1077.7	LOS F	202.9	1420.5	1.00	8.64	1.9
Approac	:h	422	0.0	1.574	1077.8	LOS F	202.9	1420.5	1.00	10.02	2.0
East: P3	330										
5	Т	274	0.0	0.140	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R	38	0.0	0.056	12.6	LOS B	0.3	1.8	0.56	0.83	44.5
Approac	:h	312	0.0	0.140	1.5	LOS B	0.3	1.8	0.07	0.10	57.6
West: P	330										
10	L	12	0.0	0.322	8.2	LOS A	0.0	0.0	0.00	1.08	49.0
11	Т	623	0.0	0.326	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	635	0.0	0.326	0.1	LOS A	0.0	0.0	0.00	0.02	59.8
All Vehic	cles	1368	0.0	1.574	332.9	NA	202.9	1420.5	0.32	3.12	5.9
	5100	1000	0.0	1.07 1	002.0	1.0.1	202.0	1120.0	0.02	0.12	0.0

P330 / N2 On-ramp (western) AM - Traffic Signals

Moven	nent Pe	rformance	- Vehic	cles							
Mov ID	Turn	Demand	HV D	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Off ramp										
1	L	87	0.0	0.386	34.5	LOS C	9.4	66.1	0.83	0.80	30.7
3	R	136	0.0	0.386	34.7	LOS C	9.4	66.1	0.83	0.81	30.6
Approa	ch	223	0.0	0.386	34.7	LOS C	9.4	66.1	0.83	0.81	30.6
East: P	330										
5	Т	280	0.0	0.258	11.0	LOS B	8.0	55.9	0.55	0.47	44.2
6	R	141	0.0	0.789	53.8	LOS D	8.7	61.0	0.99	0.95	24.1
Approa	ch	421	0.0	0.789	25.3	LOS C	8.7	61.0	0.70	0.63	34.6
West: F	P330										
10	L	17	0.0	0.758	24.7	LOS C	28.3	198.1	0.84	0.94	37.9
11	Т	809	0.0	0.764	16.5	LOS B	28.3	198.1	0.84	0.76	39.0
Approa	ch	826	0.0	0.764	16.7	LOS B	28.3	198.1	0.84	0.77	39.0
All Vehi	icles	1471	0.0	0.789	21.9	LOS C	28.3	198.1	0.80	0.73	36.2

P330 / N2 On-ramp (western) PM - Traffic Signals

Mover	lovement Performance - Vehicles lov ID Turn Demand HV Deg. Satn Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	Turn	Flow		eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed			
		veh/h	%	v/c	sec		veh	m		per veh	km/h			
South:	Onramp													
1	L	163	0.0	0.602	32.6	LOS C	16.3	114.1	0.86	0.84	31.5			
3	R	259	0.0	0.602	32.8	LOS C	16.3	114.1	0.86	0.85	31.5			
Approa	ch	422	0.0	0.602	32.7	LOS C	16.3	114.1	0.86	0.85	31.5			
East: P	330													
5	Т	274	0.0	0.287	14.6	LOS B	8.8	61.5	0.63	0.54	41.0			
6	R	38	0.0	0.169	38.9	LOS D	2.1	14.4	0.82	0.76	28.8			
Approa	ch	312	0.0	0.287	17.6	LOS B	8.8	61.5	0.66	0.57	39.0			
West: F	P330													
10	L	12	0.0	0.658	26.9	LOS C	21.9	153.2	0.82	0.93	36.5			
11	Т	623	0.0	0.666	18.7	LOS B	21.9	153.2	0.82	0.73	37.6			
Approa	ch	635	0.0	0.666	18.9	LOS B	21.9	153.2	0.82	0.74	37.6			
All Veh	icles	1368	0.0	0.666	22.8	LOS C	21.9	153.2	0.79	0.73	35.8			

P330 / N2 On-ramp (Eastern) AM

Mover	nent Pe	erformance	- Vehi	icles							
Mov ID	Turn	Demand	ΗV	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	330										
4	L	408	0.0	0.403	8.2	LOS A	0.0	0.0	0.00	0.81	49.0
5	Т	357	0.0	0.403	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	765	0.0	0.403	4.4	LOS A	0.0	0.0	0.00	0.43	53.6
North: (Off-ramp										
7	L	38	0.0	0.275	30.2	LOS D	1.2	8.2	0.79	1.03	33.5
9	R	17	0.0	0.276	30.0	LOS D	1.2	8.2	0.79	1.03	33.6
Approa	ch	55	0.0	0.275	30.1	LOS D	1.2	8.2	0.79	1.03	33.6
West: F	2330										
11	Т	541	0.0	0.277	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
12	R	436	0.0	0.810	25.4	LOS D	9.0	63.0	0.90	1.44	35.2
Approa	ch	977	0.0	0.811	11.4	LOS D	9.0	63.0	0.40	0.64	45.7
All Veh	icles	1797	0.0	0.811	8.9	NA	9.0	63.0	0.24	0.56	48.2
All Veh	icles	1/9/	0.0	0.811	8.9	NA	9.0	63.0	0.24	0.56	48.

P330 / N2 On-ramp (Eastern) PM

Move	ment Pe	erformance	- Vehi	cles							
Mov ID) Turn	Demand Flow	HV I	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	330										
4	L	229	0.0	0.267	8.2	LOS A	0.0	0.0	0.00	0.84	49.0
5	Т	279	0.0	0.267	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ich	508	0.0	0.267	3.7	LOS A	0.0	0.0	0.00	0.38	54.5
North:	Off-ramp										
7	L	56	0.0	0.217	21.6	LOS C	0.9	6.5	0.73	1.01	38.6
9	R	12	0.0	0.218	21.5	LOS C	0.9	6.5	0.73	1.02	38.7
Approa	ich	67	0.0	0.217	21.6	LOS C	0.9	6.5	0.73	1.01	38.6
West: I	>330										
11	Т	646	0.0	0.331	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
12	R	274	0.0	0.337	12.6	LOS B	2.1	14.5	0.59	0.91	44.5
Approa	ich	920	0.0	0.337	3.7	LOS B	2.1	14.5	0.17	0.27	54.4
All Veh	icles	1496	0.0	0.337	4.5	NA	2.1	14.5	0.14	0.34	53.4

P467 / P228 AM

Mover	nont Be	rformonee	Vobie								
		erformance			•		050/ 0	()			
Mov ID	Iurn	Demand	HVC	eg. Satn	Average	Level of	95% Back		Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	P228										
1	L	12	0.0	0.017	11.0	LOS B	0.1	0.5	0.14	0.89	46.3
2	Т	1	0.0	0.016	10.6	LOS B	0.1	0.5	0.14	0.91	46.7
3	R	4	0.0	0.017	10.8	LOS B	0.1	0.5	0.14	0.95	46.5
Approa	ch	17	0.0	0.017	10.9	LOS B	0.1	0.5	0.14	0.90	46.4
East: P	467										
4	L	7	0.0	0.026	8.3	LOS A	0.2	1.3	0.12	0.86	48.9
5	Т	42	0.0	0.026	0.1	LOS A	0.2	1.3	0.12	0.00	57.5
6	R	1	0.0	0.026	8.6	LOS A	0.2	1.3	0.12	0.98	48.7
Approa	ch	51	0.0	0.026	1.5	LOS A	0.2	1.3	0.12	0.15	55.8
North: E	Entrance	of Nutri Flo									
7	L	1	0.0	0.003	11.2	LOS B	0.0	0.1	0.16	0.86	46.2
8	Т	1	0.0	0.003	10.7	LOS B	0.0	0.1	0.16	0.89	46.5
9	R	1	0.0	0.003	11.0	LOS B	0.0	0.1	0.16	0.93	46.3
Approa	ch	3	0.0	0.003	11.0	LOS B	0.0	0.1	0.16	0.89	46.3
West: F	P467										
10	L	1	0.0	0.023	8.4	LOS A	0.2	1.1	0.14	0.80	48.9
11	Т	33	0.0	0.023	0.2	LOS A	0.2	1.1	0.14	0.00	57.0
12	R	8	0.0	0.023	8.6	LOS A	0.2	1.1	0.14	0.92	48.6
Approa	ch	42	0.0	0.023	2.1	LOS A	0.2	1.1	0.14	0.20	54.9
All Veh		113	0.0	0.026	3.4	NA	0.2	1.3	0.13	0.30	53.6

P467 / P228 PM

Move	mont Pa	erformance	- Vehi						·		
	D Turn	Demand		Deg. Satn	Average	Level of	95% Back	of Oueue	Prop.	Effective	Average
IVIOV IL	Jium	Flow	IIV L	Jey. Salli	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	0011100	venicies	m	Quouou	per veh	km/h
South:	D228	Ven/m	/0	V/C	560		ven		_	perven	KI1/11
<u>30</u> uiii. 1		11	0.0	0.022	11.1	LOS B	0.1	0.7	0.15	0.87	46.3
2	T	1	0.0	0.022	10.6	LOS B	0.1	0.7	0.15	0.89	46.6
3	R	9									
			0.0	0.022	10.8	LOS B	0.1	0.7	0.15	0.94	46.4
Approa		21	0.0	0.022	10.9	LOS B	0.1	0.7	0.15	0.90	46.3
East: F											
4	L	3	0.0	0.022	8.2	LOS A	0.2	1.1	0.09	0.93	49.0
5	Т	39	0.0	0.022	0.1	LOS A	0.2	1.1	0.09	0.00	58.3
6	R	1	0.0	0.022	8.5	LOS A	0.2	1.1	0.09	1.05	48.7
Approa	ach	43	0.0	0.022	0.9	LOS A	0.2	1.1	0.09	0.09	57.2
North:	Entrance	of Nutri Flo									
7	L	1	0.0	0.003	11.1	LOS B	0.0	0.1	0.11	0.89	46.2
8	Т	1	0.0	0.003	10.6	LOS B	0.0	0.1	0.11	0.91	46.5
9	R	1	0.0	0.003	10.9	LOS B	0.0	0.1	0.11	0.96	46.3
Approa	ach	3	0.0	0.003	10.9	LOS B	0.0	0.1	0.11	0.92	46.3
West:											
10	L	1	0.0	0.020	8.3	LOS A	0.1	0.8	0.12	0.71	48.7
11	Т	18	0.0	0.020	0.1	LOS A	0.1	0.8	0.12	0.00	57.2
12	R	15	0.0	0.020	8.6	LOS A	0.1	0.8	0.12	0.82	48.5
Approa		34	0.0	0.020	4.1	LOS A	0.1	0.8	0.12	0.38	52.8
All Vel		101	0.0	0.022	4.4	NA	0.2	1.1	0.11	0.38	52.8
		101	5.0	0.022			0.2		0.11	0.00	02.0

P467 / N2 Off ramp (western) AM

Moven	nent Pe	rformance	- Vehic	les							
Mov ID	Turn	Demand Flow	HV D	eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: (Off-Ram	0									
1	L	21	0.0	0.032	11.2	LOS B	0.1	1.0	0.10	0.90	46.1
3	R	11	0.0	0.032	11.2	LOS B	0.1	1.0	0.10	1.01	46.0
Approa	ch	32	0.0	0.032	11.2	LOS B	0.1	1.0	0.10	0.94	46.0
East: P4	467										
5	Т	26	0.0	0.034	0.4	LOS A	0.2	1.4	0.22	0.00	55.1
6	R	26	0.0	0.034	9.3	LOS A	0.2	1.4	0.22	0.82	48.0
Approa	ch	53	0.0	0.034	4.8	LOS A	0.2	1.4	0.22	0.41	51.3
West: P	467										
10	L	27	0.0	0.059	8.2	LOS A	0.0	0.0	0.00	0.94	49.0
11	Т	86	0.0	0.059	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	114	0.0	0.059	2.0	LOS A	0.0	0.0	0.00	0.23	56.9
All Vehi	cles	198	0.0	0.059	4.2	NA	0.2	1.4	0.07	0.39	53.4

P467 / N2 Off ramp (western) PM

Move	nent Pe	rformance	- Vehi	cles							
Mov ID	Turn	Demand Flow	HV I	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Off-Ramp)									
1	L	64	0.0	0.087	10.9	LOS B	0.4	2.9	0.10	0.90	46.3
3	R	26	0.0	0.087	10.9	LOS B	0.4	2.9	0.10	1.00	46.3
Approa	ch	91	0.0	0.087	10.9	LOS B	0.4	2.9	0.10	0.93	46.3
East: P	467										
5	Т	25	0.0	0.018	0.2	LOS A	0.1	0.8	0.14	0.00	57.1
6	R	7	0.0	0.018	9.0	LOS A	0.1	0.8	0.14	0.99	48.3
Approa	ch	33	0.0	0.018	2.2	LOS A	0.1	0.8	0.14	0.22	54.9
West: F	P467										
10	L	13	0.0	0.025	8.2	LOS A	0.0	0.0	0.00	0.93	49.0
11	Т	35	0.0	0.025	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	47	0.0	0.025	2.2	LOS A	0.0	0.0	0.00	0.25	56.6
All Veh	icles	171	0.0	0.087	6.8	NA	0.4	2.9	0.08	0.61	50.4
11 Approa		35 47	0.0 0.0	0.025 0.025	0.0	LOS A LOS A	0.0	0.0	0.00	0.00 0.25	6 5

P467 / On ramp (eastern) AM

Demand Flow	ΗV	Deg. Satn	Average						
			Average	Level of	95% Back	of Queue	Prop.	Effective	Average
			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
veh/h	%	v/c	sec		veh	m		per veh	km/h
35	0.0	0.040	8.2	LOS A	0.0	0.0	0.00	0.84	49.0
41	0.0	0.040	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
76	0.0	0.040	3.8	LOS A	0.0	0.0	0.00	0.38	54.4
5	0.0	0.017	11.4	LOS B	0.1	0.6	0.12	0.86	45.8
9	0.0	0.017	11.5	LOS B	0.1	0.6	0.12	0.97	45.7
15	0.0	0.017	11.5	LOS B	0.1	0.6	0.12	0.93	45.8
22	0.0	0.065	0.3	LOS A	0.4	2.5	0.18	0.00	55.7
72	0.0	0.065	9.1	LOS A	0.4	2.5	0.18	0.74	47.8
94	0.0	0.065	7.1	LOS A	0.4	2.5	0.18	0.56	49.4
184	0.0	0.065	6.0	NA	0.4	2.5	0.10	0.52	51.0
	41 76 5 9 15 22 72 94	35 0.0 41 0.0 76 0.0 5 0.0 9 0.0 15 0.0 22 0.0 72 0.0 94 0.0	35 0.0 0.040 41 0.0 0.040 76 0.0 0.040 5 0.0 0.017 9 0.0 0.017 15 0.0 0.017 22 0.0 0.065 72 0.0 0.065 94 0.0 0.065	35 0.0 0.040 8.2 41 0.0 0.040 0.0 76 0.0 0.040 3.8 5 0.0 0.017 11.4 9 0.0 0.017 11.5 15 0.0 0.017 11.5 22 0.0 0.065 0.3 72 0.0 0.065 9.1 94 0.0 0.065 7.1	35 0.0 0.040 8.2 LOS A 41 0.0 0.040 0.0 LOS A 76 0.0 0.040 3.8 LOS A 5 0.0 0.017 11.4 LOS B 9 0.0 0.017 11.5 LOS B 15 0.0 0.017 11.5 LOS B	35 0.0 0.040 8.2 LOS A 0.0 41 0.0 0.040 0.0 LOS A 0.0 76 0.0 0.040 3.8 LOS A 0.0 76 0.0 0.040 3.8 LOS A 0.0 5 0.0 0.017 11.4 LOS B 0.1 9 0.0 0.017 11.5 LOS B 0.1 15 0.0 0.017 11.5 LOS B 0.1 22 0.0 0.065 0.3 LOS A 0.4 72 0.0 0.065 9.1 LOS A 0.4 94 0.0 0.065 7.1 LOS A 0.4	35 0.0 0.040 8.2 LOS A 0.0 0.0 41 0.0 0.040 0.0 LOS A 0.0 0.0 76 0.0 0.040 3.8 LOS A 0.0 0.0 76 0.0 0.040 3.8 LOS A 0.0 0.0 76 0.0 0.040 3.8 LOS A 0.0 0.0 5 0.0 0.017 11.4 LOS B 0.1 0.6 9 0.0 0.017 11.5 LOS B 0.1 0.6 15 0.0 0.017 11.5 LOS B 0.1 0.6 22 0.0 0.065 0.3 LOS A 0.4 2.5 72 0.0 0.065 9.1 LOS A 0.4 2.5 94 0.0 0.065 7.1 LOS A 0.4 2.5	35 0.0 0.040 8.2 LOS A 0.0 0.0 0.00 41 0.0 0.040 0.0 LOS A 0.0 0.00 0.00 76 0.0 0.040 3.8 LOS A 0.0 0.0 0.00 76 0.0 0.040 3.8 LOS A 0.0 0.0 0.00 76 0.0 0.017 11.4 LOS B 0.1 0.6 0.12 9 0.0 0.017 11.5 LOS B 0.1 0.6 0.12 15 0.0 0.017 11.5 LOS B 0.1 0.6 0.12 22 0.0 0.065 0.3 LOS A 0.4 2.5 0.18 72 0.0 0.065 9.1 LOS A 0.4 2.5 0.18 94 0.0 0.065 7.1 LOS A 0.4 2.5 0.18	35 0.0 0.040 8.2 LOS A 0.0 0.0 0.00 0.84 41 0.0 0.040 0.0 LOS A 0.0 0.0 0.00 0.84 41 0.0 0.040 0.0 LOS A 0.0 0.0 0.00 0.00 76 0.0 0.040 3.8 LOS A 0.0 0.0 0.00 0.38 5 0.0 0.017 11.4 LOS B 0.1 0.6 0.12 0.86 9 0.0 0.017 11.5 LOS B 0.1 0.6 0.12 0.97 15 0.0 0.017 11.5 LOS B 0.1 0.6 0.12 0.93

P467 / On ramp (eastern) PM

											÷
Move	ment Pe	rformance	- Vehic	cles							
Mov ID	Turn	Demand	HV D	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	467										
4	L	5	0.0	0.013	8.2	LOS A	0.0	0.0	0.00	0.96	49.0
5	Т	20	0.0	0.013	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ich	25	0.0	0.013	1.7	LOS A	0.0	0.0	0.00	0.20	57.3
North:	Off-ramp										
7	L	5	0.0	0.020	11.2	LOS B	0.1	0.7	0.12	0.85	46.1
9	R	13	0.0	0.020	11.2	LOS B	0.1	0.7	0.12	0.95	46.0
Approa	ich	18	0.0	0.020	11.2	LOS B	0.1	0.7	0.12	0.92	46.0
West: I	P467										
11	Т	20	0.0	0.040	0.1	LOS A	0.2	1.6	0.09	0.00	57.8
12	R	42	0.0	0.040	8.9	LOS A	0.2	1.6	0.09	0.79	48.0
Approa	ich	62	0.0	0.040	6.1	LOS A	0.2	1.6	0.09	0.54	50.8
All Veh	icles	105	0.0	0.040	5.9	NA	0.2	1.6	0.07	0.52	51.3

P330 / P474 AM - STOP

Mover	nent Pe	erformance	e - Veh	icles							
Mov ID	Turn	Demand Flow	ΗV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	330										
5	Т	387	0.0	0.235	7.1	LOS A	4.9	34.0	0.84	0.00	46.6
6	R	17	0.0	0.234	15.6	LOS C	4.9	34.0	0.84	1.03	45.3
Approa	ch	404	0.0	0.235	7.5	LOS C	4.9	34.0	0.84	0.04	46.6
North: F	P474										
7	L	23	0.0	1.362	706.1	LOS F	129.8	908.9	1.00	9.43	2.9
9	R	335	0.0	1.366	705.9	LOS F	129.8	908.9	1.00	7.43	2.9
Approa	ch	358	0.0	1.368	705.9	LOS F	129.8	908.9	1.00	7.56	2.9
West: F	P330										
10	L	163	0.0	0.218	8.2	LOS A	0.0	0.0	0.00	0.87	49.0
11	Т	254	0.0	0.218	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	417	0.0	0.218	3.2	LOS A	0.0	0.0	0.00	0.34	55.1
All Veh	icles	1179	0.0	1.368	218.0	NA	129.8	908.9	0.59	2.43	8.5

P330 / P474 PM - STOP

Mover	nent Pe	erformance	- Vehic	les							
Mov ID	Turn	Demand	HV C	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	330										
5	Т	225	0.0	0.211	7.8	LOS A	3.4	23.7	0.76	0.00	46.0
6	R	41	0.0	0.211	16.2	LOS C	3.4	23.7	0.76	1.02	43.9
Approa	ch	266	0.0	0.211	9.1	LOS C	3.4	23.7	0.76	0.16	45.6
North: I	P474										
7	L	22	0.0	0.539	25.9	LOS D	3.8	26.4	0.77	1.13	35.7
9	R	160	0.0	0.539	25.7	LOS D	3.8	26.4	0.77	1.14	35.9
Approa	ch	182	0.0	0.538	25.7	LOS D	3.8	26.4	0.77	1.14	35.8
West: F	2330										
10	L	179	0.0	0.237	8.2	LOS A	0.0	0.0	0.00	0.87	49.0
11	Т	274	0.0	0.237	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ich	453	0.0	0.237	3.2	LOS A	0.0	0.0	0.00	0.34	55.1
All Veh	icles	901	0.0	0.538	9.5	NA	3.8	26.4	0.38	0.45	47.1

P330 / P474 AM - Traffic Signals

Mover	nent Pe	erformance	e - Veh	icles							
Mov ID	Turn	Demand	ΗV	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	330										
5	Т	387	0.0	0.482	19.0	LOS B	14.0	98.1	0.76	0.66	37.5
6	R	17	0.0	0.484	27.4	LOS C	14.0	98.1	0.76	0.94	36.0
Approa	ch	404	0.0	0.482	19.4	LOS B	14.0	98.1	0.76	0.67	37.4
North: F	P474										
7	L	23	0.0	0.482	29.8	LOS C	13.2	92.7	0.79	0.82	32.7
9	R	335	0.0	0.482	30.1	LOS C	13.2	92.7	0.79	0.83	32.7
Approa	ch	358	0.0	0.482	30.1	LOS C	13.2	92.7	0.79	0.83	32.7
West: F	2330 ·										
10	L	163	0.0	0.467	25.7	LOS C	13.9	97.5	0.73	0.87	36.2
11	Т	254	0.0	0.467	17.6	LOS B	13.9	97.5	0.73	0.64	37.7
Approa	ch	417	0.0	0.467	20.8	LOS C	13.9	97.5	0.73	0.73	37.1
All Vehi	cles	1179	0.0	0.482	23.1	LOS C	14.0	98.1	0.76	0.74	35.8

P330 / P474 PM - Traffic Signals

Mover	nent Pe	erformance	- Vehic	cles							
Mov ID	Turn	Demand Flow	HV [Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	330										
5	Т	225	0.0	0.325	15.0	LOS B	8.8	61.5	0.65	0.55	40.3
6	R	41	0.0	0.324	23.4	LOS C	8.8	61.5	0.65	0.93	38.0
Approa	ch	266	0.0	0.325	16.3	LOS B	8.8	61.5	0.65	0.61	39.9
North: I	P474										
7	L	22	0.0	0.305	33.0	LOS C	7.7	53.9	0.79	0.79	31.3
9	R	160	0.0	0.304	33.2	LOS C	7.7	53.9	0.79	0.80	31.2
Approa	ch	182	0.0	0.304	33.2	LOS C	7.7	53.9	0.79	0.80	31.2
West: F	P330										
10	L	179	0.0	0.435	21.2	LOS C	13.3	93.1	0.64	0.88	38.9
11	Т	274	0.0	0.435	13.1	LOS B	13.3	93.1	0.64	0.56	41.2
Approa	ch	453	0.0	0.435	16.3	LOS B	13.3	93.1	0.64	0.69	40.3
All Veh	icles	901	0.0	0.435	19.7	LOS B	13.3	93.1	0.67	0.69	38.0

P474 / P228 AM

Moven	nent Pe	rformance	- Vehic	les							
Mov ID	Turn	Demand Flow	HV D	eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P4	474										
5	Т	182	0.0	0.096	9.0	LOS A	0.8	5.5	0.32	0.47	47.5
6	R	3	0.0	0.096	9.0	LOS A	0.8	5.5	0.32	0.63	47.4
Approa	ch	185	0.0	0.096	9.0	LOS A	0.8	5.5	0.32	0.48	47.5
North: F	P228										
7	L	12	0.0	0.020	11.6	LOS B	0.0	0.3	0.24	0.87	46.2
8	Т	131	0.0	0.202	13.6	LOS B	1.1	7.7	0.52	0.92	44.5
Approa	ch	142	0.0	0.202	13.5	LOS B	1.1	7.7	0.50	0.92	44.6
South V	Vest: P4	74									
30	L	55	0.0	0.085	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
31	Т	108	0.0	0.085	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
Approa	ch	163	0.0	0.085	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
All Vehi	cles	491	0.0	0.202	9.9	NA	1.1	7.7	0.26	0.67	47.2

P474 / P228 PM

Mover	ment Pe	rformance	e - Vehi	cles							
Mov ID) Turn	Demand	HV I	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	474										
5	Т	81	0.0	0.049	9.4	LOS A	0.4	2.8	0.39	0.42	47.3
6	R	8	0.0	0.049	9.4	LOS A	0.4	2.8	0.39	0.65	47.1
Approa	ich	89	0.0	0.049	9.4	LOS A	0.4	2.8	0.39	0.45	47.3
North:	P228										
7	L	4	0.0	0.008	11.9	LOS B	0.0	0.1	0.30	0.84	46.0
8	Т	76	0.0	0.112	13.0	LOS B	0.6	4.1	0.47	0.90	44.9
Approa	ich	80	0.0	0.112	13.0	LOS B	0.6	4.1	0.46	0.89	45.0
South \	Nest: P47	74									
30	L	121	0.0	0.139	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
31	Т	144	0.0	0.139	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
Approa	ich	265	0.0	0.139	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
All Veh	icles	435	0.0	0.139	9.1	NA	0.6	4.1	0.17	0.66	48.0

Existing + All New Developments Traffic flows – Movement Summaries

Moven	nent Pe	erformance	- Vehic	les							
Mov ID	Turn	Demand Flow	HV C	0eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	330										
5	Т	387	0.0	0.995	123.1	LOS F	68.6	480.0	1.00	1.31	13.2
6	R	197	0.0	0.994	131.6	LOS F	68.6	480.0	1.00	1.31	13.1
Approa	ch	584	0.0	0.995	126.0	LOS F	68.6	480.0	1.00	1.31	13.2
North: F	P474										
7	L	334	0.0	0.997	125.4	LOS F	82.4	576.8	1.00	1.12	13.4
9	R	395	0.0	0.998	125.7	LOS F	82.4	576.8	1.00	1.12	13.4
Approa	ch	728	0.0	0.997	125.6	LOS F	82.4	576.8	1.00	1.12	13.4
West: F	P330										
10	L	188	0.0	0.440	31.2	LOS C	20.4	143.0	0.66	0.88	33.0
11	Т	254	0.0	0.439	23.0	LOS C	20.4	143.0	0.66	0.59	34.6
Approa	ch	442	0.0	0.440	26.5	LOS C	20.4	143.0	0.66	0.71	33.9
All Vehi	icles	1755	0.0	0.997	100.8	LOS F	82.4	576.8	0.92	1.08	15.7

P330/P474 intersection AM – Traffic Signals

P330/P474 intersection PM – Traffic Signals

Mover	nent P	erformance	e - Vehic	les							
Mov ID	Turn	Demand	HV D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P3	330										
5	Т	225	0.0	0.869	24.6	LOS C	18.9	132.6	0.92	1.08	32.6
6	R	338	0.0	0.870	32.9	LOS C	18.9	132.6	0.92	1.14	32.2
Approac	ch	563	0.0	0.870	29.6	LOS C	18.9	132.6	0.92	1.11	32.3
North: P	474										
7	L	187	0.0	0.319	9.1	LOS A	1.5	10.5	0.36	0.68	47.8
9	R	185	0.0	0.831	37.8	LOS D	6.9	48.5	1.00	0.99	29.3
Approac	ch	373	0.0	0.831	23.4	LOS C	6.9	48.5	0.68	0.83	36.5
West: P	330										
10	L	240	0.0	0.421	13.0	LOS B	7.9	55.3	0.53	0.86	45.2
11	Т	274	0.0	0.421	4.8	LOS A	7.9	55.3	0.53	0.46	49.3
Approac	ch	514	0.0	0.421	8.6	LOS A	7.9	55.3	0.53	0.65	47.3
All Vehic	cles	1449	0.0	0.870	20.6	LOS C	18.9	132.6	0.72	0.88	37.7

Movement Performance - Vehicles Mov ID Turn HV Deg. Satn 95% Back of Queue Average Average Delay Speed per veh East: P330 5 Т 387 0.0 0.875 25.8 LOS C 19.3 135.2 0.98 1.12 32.4 6 R 197 0.0 0.875 34.1 LOS C 19.3 135.2 0.98 1.14 32.2 Approach 584 0.0 0.875 28.6 LOS C 19.3 135.2 0.98 1.13 32.3 North: P474 7 L 334 0.0 0.593 9.5 LOS A 3.2 22.3 0.43 0.71 47.4 9 R 395 0.0 0.886 38.9 LOS D 13.8 96.8 1.00 1.06 28.9 0.0 0.886 LOS C 13.8 0.90 Approach 728 25.4 96.8 0.74 35.3 West: P330 8.5 10 L 188 0.0 0.445 16.4 LOS B 59.8 0.67 0.86 42.6 т 8.2 11 254 0.0 LOS A 8.5 59.8 0.67 0.58 45.2 0.445 Approach 442 0.0 0.445 11.7 LOS B 8.5 59.8 0.67 0.70 44.1 All Vehicles 1755 0.0 0.886 23.0 LOS C 19.3 135.2 0.80 0.92 36.0

P330/P474 intersection AM - Traffic Signals + Sip lane

P330/P474 intersection PM – Traffic Signals + Sip lane

							S	Vehicle	formance	ent Pe	vem	Мо
∖verage Speed	Effective Stop Rate	Prop. Queued	of Queue Distance	95% Back Vehicles	Level of Service	Average Delay		HV De	Demand Flow	Turn	' ID	Mo
km/h	per veh		m	veh		sec	v/c	%	veh/h			
										30	t: P3	Eas
32.6	1.08	0.92	132.6	18.9	LOS C	24.6	0.869	0.0	225	Т	;	ļ
32.2	1.14	0.92	132.6	18.9	LOS C	32.9	0.870	0.0	338	R	;	(
32.3	1.11	0.92	132.6	18.9	LOS C	29.6	0.870	0.0	563	h	roac	App
										474	h: P	Nor
47.8	0.68	0.36	10.5	1.5	LOS A	9.1	0.319	0.0	187	L		-
29.3	0.99	1.00	48.5	6.9	LOS D	37.8	0.831	0.0	185	R)	9
36.5	0.83	0.68	48.5	6.9	LOS C	23.4	0.831	0.0	373	h	roac	App
										330	st: P3	We
45.2	0.86	0.53	55.3	7.9	LOS B	13.0	0.421	0.0	240	L	0	1
49.3	0.46	0.53	55.3	7.9	LOS A	4.8	0.421	0.0	274	Т	1	1
47.3	0.65	0.53	55.3	7.9	LOS A	8.6	0.421	0.0	514	h	roac	App
37.7	0.88	0.72	132.6	18.9	LOS C	20.6	0.870	0.0	1449	les	/ehic	All
	0.83 0.86 0.46 0.65	0.68 0.53 0.53 0.53	48.5 55.3 55.3 55.3	6.9 7.9 7.9 7.9	LOS C LOS B LOS A LOS A	23.4 13.0 4.8 8.6	0.831 0.421 0.421 0.421	0.0 0.0 0.0 0.0	373 240 274 514	h 330 L T h	roac st: P3 0 1 roac	App We 1 1 App

P228/P474 intersection AM

Moven	nent Pe	rformance	- Vehi	cles							
Mov ID	Turn	Demand Flow	ΗV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	474										
5	Т	182	0.0	0.249	10.5	LOS B	2.0	13.9	0.52	0.34	46.5
6	R	152	0.0	0.249	10.6	LOS B	2.0	13.9	0.52	0.76	46.4
Approa	ch	334	0.0	0.249	10.5	LOS B	2.0	13.9	0.52	0.53	46.4
North: F	P228										
7	L	199	0.0	0.368	12.6	LOS B	1.1	8.0	0.38	0.91	45.6
8	Т	501	0.0	1.185	370.8	LOS F	113.0	791.0	1.00	6.58	5.3
Approa	ch	700	0.0	1.184	269.0	LOS F	113.0	791.0	0.82	4.97	7.2
South V	Vest: P47	74									
30	L	260	0.0	0.196	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
31	Т	109	0.0	0.196	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
Approa	ch	369	0.0	0.196	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
All Vehi	icles	1403	0.0	1.184	138.8	NA	113.0	791.0	0.53	2.78	12.5

P228/P474 intersection PM

Moven	nent Pe	erformance	- Vehi	cles							
Mov ID	Turn	Demand Flow		Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	474										
5	Т	81	0.0	0.287	13.3	LOS B	2.1	15.0	0.66	0.24	43.9
6	R	168	0.0	0.287	13.3	LOS B	2.1	15.0	0.66	0.93	43.8
Approa	ch	249	0.0	0.287	13.3	LOS B	2.1	15.0	0.66	0.70	43.8
North: F	P228										
7	L	126	0.0	0.259	13.5	LOS B	0.8	5.3	0.47	0.94	45.0
8	Т	321	0.0	0.847	40.0	LOS E	11.7	82.0	0.92	1.61	29.1
Approa	ch	447	0.0	0.847	32.5	LOS E	11.7	82.0	0.79	1.42	32.4
South V	Vest: P4	74									
30	L	479	0.0	0.332	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
31	Т	144	0.0	0.332	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
Approa	ch	623	0.0	0.332	7.8	LOS A	0.0	0.0	0.00	0.66	49.3
All Vehi	icles	1320	0.0	0.847	17.2	NA	11.7	82.0	0.39	0.93	41.1

P228 / P467 AM

Mover	nont Po	erformance	- Vohie								
Mov ID		Demand			Average	Level of	95% Back	of Outouto	Drop	Effective	Average
	rum	Flow	пνυ	eg. Satn	Average Delav	Service	Vehicles		Prop. Queued	Stop Rate	Average Speed
			0/			OCIVICE		Distance	Queueu		
0 11	Dooo	veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	P228										
1	L	615	0.0	2.235	2257.2	LOS F	545.2	3816.5	1.00	19.00	0.9
2	Т	1	0.0	1.053	2256.7	LOS F	545.2	3816.5	1.00	16.49	0.9
3	R	159	0.0	2.239	2257.0	LOS F	545.2	3816.5	1.00	16.35	0.9
Approa	ch	775	0.0	2.237	2257.1	LOS F	545.2	3816.5	1.00	18.46	0.9
East: P	467										
4	L	83	0.0	0.362	8.4	LOS A	3.4	24.0	0.17	0.84	49.0
5	Т	615	0.0	0.361	0.2	LOS A	3.4	24.0	0.17	0.00	56.6
6	R	1	0.0	0.351	8.6	LOS A	3.4	24.0	0.17	0.98	48.8
Approa	ch	699	0.0	0.361	1.2	LOS A	3.4	24.0	0.17	0.10	55.6
North: I	Entrance	of Nutri Flo									
7	L	1	0.0	0.032	44.2	LOS E	0.1	0.8	0.47	0.65	27.3
8	Т	1	0.0	0.032	43.8	LOS E	0.1	0.8	0.47	0.99	27.4
9	R	1	0.0	0.032	44.0	LOS E	0.1	0.8	0.47	1.02	27.4
Approa	ch	3	0.0	0.032	44.0	LOS E	0.1	0.8	0.47	0.89	27.4
West: F	P467										
10	L	1	0.0	0.526	16.5	LOS C	4.4	31.0	0.80	0.13	41.2
11	Т	33	0.0	0.553	8.3	LOS A	4.4	31.0	0.80	0.00	42.7
12	R	323	0.0	0.551	16.7	LOS C	4.4	31.0	0.80	1.09	41.2
Approa	ch	357	0.0	0.551	16.0	LOS C	4.4	31.0	0.80	0.99	41.4
All Veh	icles	1834	0.0	2.237	957.3	NA	545.2	3816.5	0.64	8.03	2.2

P228 / P467 PM

Move	ment Pe	erformance	e - Vehi	cles							
Mov II	D Turn	Demand	HV I	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	P228										
1	L	319	0.0	3.322	4225.1	LOS F	368.2	2577.4	1.00	11.17	0.5
2	Т	1	0.0	1.053	4224.6	LOS F	368.2	2577.4	1.00	10.17	0.5
3	R	92	0.0	3.271	4224.8	LOS F	368.2	2577.4	1.00	10.28	0.5
Approa	ach	412	0.0	3.308	4225.0	LOS F	368.2	2577.4	1.00	10.97	0.5
East: I	P467										
4	L	145	0.0	0.595	8.4	LOS A	7.7	54.1	0.17	0.84	49.0
5	Т	1005	0.0	0.594	0.2	LOS A	7.7	54.1	0.17	0.00	56.7
6	R	1	0.0	0.526	8.6	LOS A	7.7	54.1	0.17	0.97	48.8
Approa	ach	1152	0.0	0.594	1.2	LOS A	7.7	54.1	0.17	0.11	55.6
North:	Entrance	of Nutri Flo									
7	L	1	0.0	0.132	139.5	LOS F	0.4	2.8	0.65	0.51	12.5
8	Т	1	0.0	0.132	139.1	LOS F	0.4	2.8	0.65	1.00	12.4
9	R	1	0.0	0.132	139.3	LOS F	0.4	2.8	0.65	1.01	12.4
Approa	ach	3	0.0	0.126	139.3	LOS F	0.4	2.8	0.65	0.84	12.4
West:	P467										
10	L	1	0.0	1.053	3388.9	LOS F	523.9	3667.2	1.00	0.00	0.6
11	Т	18	0.0	2.982	3380.7	LOS F	523.9	3667.2	1.00	0.00	0.6
12	R	615	0.0	2.873	3389.1	LOS F	523.9	3667.2	1.00	15.59	0.6
Approa	ach	634	0.0	2.867	3388.9	LOS F	523.9	3667.2	1.00	15.13	0.6
All Vel	hicles	2200	0.0	3.308	1767.4	NA	523.9	3667.2	0.56	6.47	1.2

10 Year Background Traffic & All Developments Traffic – Movement Summaries

Moven	nent Pe	erformance	- Vehi	cles							
Mov ID	Turn	Demand Flow	HV [Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P3	330										
5	Т	496	0.0	0.944	70.3	LOS E	65.2	456.6	1.00	1.11	19.5
6	R	201	0.0	0.945	78.6	LOS E	65.2	456.6	1.00	1.11	19.4
Approad	ch	697	0.0	0.944	72.7	LOS E	65.2	456.6	1.00	1.11	19.5
North: F	P474										
7	L	340	0.0	0.922	14.2	LOS B	6.2	43.4	0.58	0.76	43.3
9	R	488	0.0	0.962	104.8	LOS F	47.6	333.2	1.00	1.04	15.3
Approad	ch	828	0.0	0.962	67.6	LOS E	47.6	333.2	0.83	0.93	21.0
West: P	330										
10	L	234	0.0	0.452	22.1	LOS C	20.8	145.7	0.54	0.88	38.2
11	Т	325	0.0	0.452	13.9	LOS B	20.8	145.7	0.54	0.49	41.0
Approad	ch	559	0.0	0.453	17.3	LOS B	20.8	145.7	0.54	0.65	39.8
All Vehi	cles	2084	0.0	0.962	55.8	LOS E	65.2	456.6	0.81	0.92	23.4

P330 & P474 Intersection AM – Traffic Signals

P330 & P474 Intersection PM – Traffic Signals

ent Pe	erformance	e - Vehic	les							
Turn	Demand	HV C	0eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
	Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	%	v/c	sec		veh	m		per veh	km/h
30										
Т	288	0.0	0.940	66.1	LOS E	60.9	426.2	0.96	1.07	20.1
R	349	0.0	0.941	74.4	LOS E	60.9	426.2	0.96	1.11	19.9
h	638	0.0	0.941	70.7	LOS E	60.9	426.2	0.96	1.09	20.0
474										
L	194	0.0	0.448	9.0	LOS A	2.3	16.4	0.24	0.66	48.1
R	231	0.0	0.931	100.0	LOS F	21.1	147.7	1.00	1.00	15.9
h	424	0.0	0.931	58.5	LOS E	21.1	147.7	0.65	0.84	23.0
330										
L	291	0.0	0.427	13.6	LOS B	16.0	111.7	0.35	0.87	44.4
Т	351	0.0	0.427	5.4	LOS A	16.0	111.7	0.35	0.32	49.9
h	641	0.0	0.427	9.1	LOS A	16.0	111.7	0.35	0.57	47.2
les	1703	0.0	0.941	44.5	LOS D	60.9	426.2	0.65	0.83	26.7
	Turn 30 T R h 474 L R h 330 L T h	Turn Demand Flow veh/h 30 - T 288 R 349 h 638 474 - L 194 R 231 h 424 330 - L 291 T 351 h 641	Turn Demand Flow HV E Veh/h % 30 30 7 288 0.0 6 8 0.0 6 8 0.0 6 8 0.0 6 8 0.0 6 474 1 194 0.0 7 231 0.0 6 1330 1 1 1291 0.0 7 351 0.0 6 441 0.0 1	Flow veh/h % v/c 30 T 288 0.0 0.940 R 349 0.0 0.941 h 638 0.0 0.941 474 L 194 0.0 0.448 R 231 0.0 0.931 h 424 0.0 0.931 330 L 291 0.0 0.427 T 351 0.0 0.427 h 641 0.0 0.427	Turn Demand Flow HV Deg. Satn Delay Average Delay veh/h % v/c sec 30 T 288 0.0 0.940 66.1 R 349 0.0 0.941 74.4 h 638 0.0 0.941 70.7 474 9.0 R 231 0.0 0.931 100.0 h 424 0.0 0.931 58.5 330 1351 0.0 0.427 5.4 h 641 0.0 0.427 9.1	Turn Demand Flow HV Deg. Satn (veh/h) Average Delay Level of Service 30	Turn Demand Flow HV Deg. Satn weh/h Average Delay Level of Service 95% Back Vehicles 30	Turn Demand Flow HV Deg. Satn Average Delay Level of Service 95% Back of Queue Vehicles Distance 30 veh/h % v/c sec veh m 30 T 288 0.0 0.940 66.1 LOS E 60.9 426.2 R 349 0.0 0.941 74.4 LOS E 60.9 426.2 h 638 0.0 0.941 70.7 LOS E 60.9 426.2 474 U U 194 0.0 0.448 9.0 LOS A 2.3 16.4 R 231 0.0 0.931 58.5 LOS E 21.1 147.7 h 424 0.0 0.931 58.5 LOS E 21.1 147.7 300 U U 13.6 LOS B 16.0 111.7 L 291 0.0 0.427 5.4 LOS A 16.0 111.7 h 641 0.0	Turn Demand Flow HV Deg. Satn weh/h Average Delay Level of Service 95% Back of Queue Vehicles Prop. Distance 30 0 v/c sec veh m veh m 30 T 288 0.0 0.940 66.1 LOS E 60.9 426.2 0.96 R 349 0.0 0.941 74.4 LOS E 60.9 426.2 0.96 h 638 0.0 0.941 70.7 LOS E 60.9 426.2 0.96 474 U U 194 0.0 0.448 9.0 LOS A 2.3 16.4 0.24 R 231 0.0 0.931 100.0 LOS F 21.1 147.7 1.00 h 4224 0.0 0.931 58.5 LOS E 21.1 147.7 0.65 330 U U 13.6 LOS B 16.0 111.7 0.35 T 351 0.0	Turn Demand Flow HV Deg. Satn veh/h Average veh/h Level of Delay 95% Back of Queue veh Prop. Distance veh Effective Stop Rate per veh 30 1 1 1 0 0.940 66.1 LOS E 60.9 426.2 0.96 1.07 R 349 0.0 0.941 74.4 LOS E 60.9 426.2 0.96 1.01 h 638 0.0 0.941 70.7 LOS E 60.9 426.2 0.96 1.09 474 1 1 70.7 LOS E 60.9 426.2 0.96 1.09 474 1 1 9.0 0.448 9.0 LOS A 2.3 16.4 0.24 0.66 R 231 0.0 0.931 58.5 LOS E 21.1 147.7 1.00 1.00 h 4224 0.0 0.931 58.5 LOS E 21.1 147.7 0.65 0.84 300 1 1.05

Moven	nent Pe	erformance	- Vehic	les							
Mov ID	Turn	Demand Flow	HV C	eg. Satn	Average Delay	Level of Service	95% Back		Prop. Queued	Effective Stop Rate	Average Speed
						Service	Vehicles	Distance	Queueu		
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P3	330										
5	Т	496	0.0	0.901	14.7	LOS B	11.0	77.0	0.86	0.83	40.4
6	R	201	0.0	0.791	30.5	LOS C	6.1	43.0	1.00	0.98	32.5
Approa	ch	697	0.0	0.901	19.2	LOS B	11.0	77.0	0.90	0.87	37.8
North: F	P474										
7	L	340	0.0	0.637	11.4	LOS B	4.0	27.8	0.57	0.76	45.8
9	R	488	0.0	0.877	32.2	LOS C	13.9	97.4	1.00	1.06	31.7
Approa	ch	828	0.0	0.877	23.7	LOS C	13.9	97.4	0.82	0.94	36.4
West: P	330										
10	L	234	0.0	0.731	21.3	LOS C	12.0	84.3	0.91	0.94	39.3
11	Т	325	0.0	0.731	13.1	LOS B	12.0	84.3	0.91	0.86	40.1
Approa	ch	559	0.0	0.732	16.5	LOS B	12.0	84.3	0.91	0.89	39.8
All Vehi	cles	2084	0.0	0.901	20.3	LOS C	13.9	97.4	0.87	0.90	37.7

P330 & P474 Intersection AM – Traffic Signals + extra lane

P330 & P474 Intersection PM – Traffic Signals + extra lane

							les	e - Vehic	erformance	nent Pe	Mover
Average Speed	Effective Stop Rate	Prop. Queued	of Queue Distance	95% Back Vehicles	Level of Service	Average Delay	eg. Satn		Demand Flow	Turn	Mov ID
km/h	per veh		m	veh		sec	v/c	%	veh/h		
										330	East: P
51.3	0.38	0.45	32.2	4.6	LOS A	4.6	0.450	0.0	288	Т	5
28.4	1.10	0.97	100.3	14.3	LOS D	40.3	0.872	0.0	349	R	6
35.6	0.77	0.73	100.3	14.3	LOS C	24.1	0.872	0.0	638	ch	Approa
										P474	North: I
47.6	0.69	0.38	13.3	1.9	LOS A	9.4	0.381	0.0	194	L	7
28.2	1.00	1.00	63.5	9.1	LOS D	40.7	0.853	0.0	231	R	9
34.7	0.86	0.72	63.5	9.1	LOS C	26.4	0.853	0.0	424	ch	Approa
										P330	West: F
44.4	0.87	0.59	78.1	11.2	LOS B	14.1	0.528	0.0	291	L	10
47.8	0.53	0.59	78.1	11.2	LOS A	5.9	0.528	0.0	351	Т	11
46.2	0.68	0.59	78.1	11.2	LOS A	9.6	0.528	0.0	641	ch	Approa
38.7	0.76	0.68	100.3	14.3	LOS B	19.3	0.872	0.0	1703	icles	All Veh
	1.00 0.86 0.87 0.53 0.68	1.00 0.72 0.59 0.59 0.59	63.5 63.5 78.1 78.1 78.1	9.1 9.1 11.2 11.2 11.2	LOS D LOS C LOS B LOS A LOS A	40.7 26.4 14.1 5.9 9.6	0.853 0.853 0.528 0.528 0.528	0.0 0.0 0.0 0.0 0.0 0.0	231 424 291 351 641	L R ch 2330 L T ch	7 9 Approa West: F 10 11 Approa

P474 & P228 Intersection AM – Traffic Signals

Moven	nent Pe	erformance	- Vehic	cles							
Mov ID	Turn	Demand	HV C	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	474										
5	Т	233	0.0	0.863	53.1	LOS D	20.0	139.9	1.00	0.96	24.3
6	R	153	0.0	0.863	53.1	LOS D	20.0	139.9	1.00	0.96	24.3
Approa	ch	385	0.0	0.864	53.1	LOS D	20.0	139.9	1.00	0.96	24.3
North: F	P228										
7	L	202	0.0	0.648	15.2	LOS B	2.6	18.5	0.43	0.94	43.4
8	Т	538	0.0	0.887	51.4	LOS D	27.8	194.9	1.00	0.99	24.7
Approa	ch	740	0.0	0.887	41.5	LOS D	27.8	194.9	0.84	0.98	28.1
South V	Vest: P4	74									
30	L	276	0.0	0.862	51.4	LOS D	21.3	149.0	1.00	0.97	24.7
31	Т	140	0.0	0.861	51.4	LOS D	21.3	149.0	1.00	0.97	24.7
Approa	ch	416	0.0	0.862	51.4	LOS D	21.3	149.0	1.00	0.97	24.7
All Vehi	icles	1541	0.0	0.887	47.1	LOS D	27.8	194.9	0.92	0.97	26.1

P474 & P228 Intersection PM – Traffic Signals

Moven	nent Pe	erformance	- Vehic	les							
Mov ID	Turn	Demand Flow	HV D	eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: P	474										
5	Т	104	0.0	0.818	52.6	LOS D	14.4	101.0	1.00	0.92	24.4
6	R	171	0.0	0.817	52.6	LOS D	14.4	101.0	1.00	0.92	24.4
Approa	ch	275	0.0	0.817	52.6	LOS D	14.4	101.0	1.00	0.92	24.4
North: F	P228										
7	L	127	0.0	0.439	12.5	LOS B	1.4	9.7	0.27	0.94	45.4
8	Т	287	0.0	0.829	52.7	LOS D	15.1	105.6	1.00	0.93	24.4
Approa	ch	415	0.0	0.829	40.4	LOS D	15.1	105.6	0.78	0.94	28.5
South V	Vest: P4	74									
30	L	513	0.0	0.833	36.7	LOS D	30.4	212.9	0.95	0.93	29.7
31	Т	184	0.0	0.834	36.7	LOS D	30.4	212.9	0.95	0.93	29.7
Approa	ch	697	0.0	0.834	36.7	LOS D	30.4	212.9	0.95	0.93	29.7
All Vehi	icles	1386	0.0	0.834	40.9	LOS D	30.4	212.9	0.91	0.93	28.1

P467 & P228 Intersection AM – Traffic Signals

Moven	nent Pe	erformance	- Vehic	les							
Mov ID	Turn	Demand	HV D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: F	228										
1	L	593	0.0	1.002	15.5	LOS B	10.0	70.0	0.94	0.87	42.0
2	Т	1	0.0	1.053	7.7	LOS A	10.0	70.0	0.94	0.80	41.7
3	R	211	0.0	0.615	25.9	LOS C	5.6	39.4	0.96	0.85	35.0
Approac	ch	806	0.0	1.002	18.2	LOS B	10.0	70.0	0.94	0.87	40.0
East: P4	467										
4	L	85	0.0	0.738	18.7	LOS B	13.9	97.4	0.85	0.97	42.1
5	Т	626	0.0	0.740	10.5	LOS B	13.9	97.4	0.85	0.82	43.3
6	R	1	0.0	0.752	18.9	LOS B	13.9	97.4	0.85	0.98	42.1
Approac	ch	713	0.0	0.740	11.5	LOS B	13.9	97.4	0.85	0.83	43.2
North: E	Intrance	of Nutri Flo									
7	L	1	0.0	0.009	22.4	LOS C	0.1	0.6	0.82	0.66	37.8
8	Т	1	0.0	0.009	14.2	LOS B	0.1	0.6	0.82	0.52	38.9
9	R	1	0.0	0.009	22.5	LOS C	0.1	0.6	0.82	0.66	37.8
Approac	ch	3	0.0	0.009	19.7	LOS B	0.1	0.6	0.82	0.61	38.1
West: P	467										
10	L	1	0.0	1.053	42.5	LOS D	31.9	223.1	1.00	1.42	29.1
11	Т	915	0.0	0.942	34.3	LOS C	31.9	223.1	1.00	1.42	29.3
12	R	274	0.0	1.000 ³	26.9	LOS C	7.6	53.2	1.00	0.84	34.4
Approad	ch	1189	0.0	1.000	32.6	LOS C	31.9	223.1	1.00	1.29	30.3
All Vehi	cles	2684	0.0	1.002	23.0	LOS C	31.9	223.1	0.95	1.05	35.7

P467 & P228 Intersection PM – Traffic Signals

	_		_								
		rformance	- Vehic	les							
Mov I	D Turn	Demand	HV D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: P228										
1	L	322	0.0	0.667	22.4	LOS C	9.2	64.3	0.97	0.87	37.2
2	Т	1	0.0	0.689	14.6	LOS B	9.2	64.3	0.97	0.83	37.0
3	R	95	0.0	0.435	35.1	LOS D	3.7	25.7	0.98	0.77	30.4
Appro	ach	418	0.0	0.667	25.3	LOS C	9.2	64.3	0.97	0.84	35.4
East:	P467										
4	L	146	0.0	0.895	28.8	LOS C	37.3	260.8	0.89	1.14	35.3
5	Т	1016	0.0	0.893	20.6	LOS C	37.3	260.8	0.89	1.02	36.0
6	R	1	0.0	0.965	29.0	LOS C	37.3	260.8	0.89	1.15	35.3
Appro	ach	1163	0.0	0.893	21.6	LOS C	37.3	260.8	0.89	1.04	35.9
North:	Entrance	of Nutri Flo									
7	L	1	0.0	0.016	32.8	LOS C	0.1	0.9	0.91	0.64	32.1
8	Т	1	0.0	0.016	24.6	LOS C	0.1	0.9	0.91	0.57	32.6
9	R	1	0.0	0.016	32.9	LOS C	0.1	0.9	0.91	0.64	32.0
Appro	ach	3	0.0	0.016	30.1	LOS C	0.1	0.9	0.91	0.62	32.2
West:	P467										
10	L	1	0.0	0.782	14.1	LOS B	15.6	109.1	0.65	0.87	44.3
11	Т	870	0.0	0.681	5.9	LOS A	15.6	109.1	0.65	0.60	47.2
12	R	170	0.0	1.000 ³	44.2	LOS D	7.5	52.3	1.00	0.93	27.0
Appro	ach	1041	0.0	1.000	12.1	LOS B	15.6	109.1	0.71	0.65	42.1
All Ve		2625	0.0	1.000	18.5	LOS B	37.3	260.8	0.83	0.85	38.0

Move	ment Per	formance	- Vehi	cles							
	D ODMo			Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
	v	Total	HV	eg. ean	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: P228										
1	L2	298	2.5	0.800	25.9	LOS C	6.0	42.9	0.95	2.40	35.1
2	T1	202	2.5	0.794	27.6	LOS C	5.2	36.9	0.95	2.36	33.9
3	R2	28	0.0	0.794	33.9	LOS C	5.2	36.9	0.95	2.36	33.9
Appro	ach	528	2.4	0.800	27.0	LOS C	6.0	42.9	0.95	1.19	34.6
East:	Seaton Dela	aval Access									
4	L2	55	2.5	0.455	16.6	LOS B	2.5	17.6	0.89	2.00	41.8
5	T1	219	2.5	0.455	16.9	LOS B	2.5	17.6	0.90	2.01	40.9
6	R2	1	0.0	0.455	24.6	LOS C	2.2	15.6	0.90	2.01	40.0
Appro	ach	275	2.5	0.455	16.9	LOS B	2.5	17.6	0.90	1.00	41.0
North:	Access to	Tinley Manc	or								
7	L2	1	0.0	0.309	8.8	LOS A	1.3	9.6	0.52	1.31	49.1
8	T1	228	2.5	0.309	7.3	LOS A	1.3	9.6	0.52	1.31	49.1
9	R2	1885	2.5	0.839	18.0	LOS B	12.2	87.4	0.87	2.05	41.1
Appro	ach	2114	2.5	0.839	16.8	LOS B	12.2	87.4	0.84	0.98	41.8
West:	P228										
10	L2	995	2.5	0.345	6.4	LOS A	1.7	11.9	0.19	1.10	50.7
11	T1	110	2.5	0.321	5.5	LOS A	1.8	12.9	0.41	1.31	46.3
12	R2	301	2.5	0.321	11.9	LOS B	1.8	12.9	0.41	1.31	46.3
Appro	ach	1406	2.5	0.345	7.5	LOS A	1.8	12.9	0.25	0.58	49.3
All Ve	hicles	4323	2.5	0.839	15.0	LOS B	12.2	87.4	0.66	0.88	42.7

Proposed Intersection of P228/Access Road to Tinley Manor AM

Proposed Intersection of P228/Access Road to Tinley Manor AM

Mov	ement Per	formance	- Vehic	cles							
Mov I	D ODMo	Demand	Flows D	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Total	ΗV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	n: P228										
1	L2	308	2.5	0.421	9.1	LOS A	2.0	14.1	0.69	1.63	47.3
2	T1	186	2.5	0.373	8.2	LOS A	1.6	11.5	0.67	1.60	46.9
3	R2	56	0.0	0.373	14.5	LOS B	1.6	11.5	0.67	1.60	46.9
Appro	bach	550	2.2	0.421	9.4	LOS A	2.0	14.1	0.68	0.81	47.1
East:	Seaton Dela	aval Access									
4	L2	29	2.5	0.125	9.1	LOS A	0.5	3.6	0.67	1.48	47.8
5	T1	115	2.5	0.125	8.3	LOS A	0.5	3.6	0.67	1.51	47.9
6	R2	1	0.0	0.125	14.8	LOS B	0.5	3.4	0.67	1.53	48.0
Appro	bach	145	2.5	0.125	8.5	LOS A	0.5	3.6	0.67	0.75	47.9
North	: Access to	Tinley Manc	or								
7	L2	1	0.0	0.222	9.2	LOS A	1.0	7.1	0.57	1.38	48.8
8	T1	159	2.5	0.222	7.8	LOS A	1.0	7.1	0.57	1.38	48.8
9	R2	1007	2.5	0.507	14.4	LOS B	3.5	25.1	0.68	1.74	43.7
Appro	bach	1167	2.5	0.507	13.5	LOS B	3.5	25.1	0.67	0.84	44.3
West	: P228										
10	L2	1899	2.5	0.664	8.6	LOS A	6.8	48.8	0.28	1.34	48.6
11	T1	224	2.5	0.452	5.9	LOS A	2.6	18.6	0.45	1.31	46.9
12	R2	304	2.5	0.452	12.2	LOS B	2.6	18.6	0.45	1.31	46.9
Appro	bach	2427	2.5	0.664	8.8	LOS A	6.8	48.8	0.32	0.67	48.2
All Ve	ehicles	4289	2.5	0.664	10.1	LOS B	6.8	48.8	0.47	0.74	46.9

Proposed Diamond Interchange by UWP – Movement Summaries

P228 / N2 AM - West Intersection

Move	ment Pe	erformance	e - Vehic	les							
Mov ID) Turn	Demand	HV C	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	N2 Off ra	amp									
1	L	386	0.0	0.401	10.5	LOS B	3.8	26.7	0.62	0.76	46.3
2	Т	1	0.0	0.921	21.7	LOS C	12.3	85.9	1.00	1.10	32.9
3	R	939	0.0	0.877	30.1	LOS C	12.3	85.9	1.00	1.10	32.7
Approa	ach	1326	0.0	0.877	24.4	LOS C	12.3	85.9	0.89	1.00	35.8
East: F	228										
5	Т	550	0.0	0.768	13.5	LOS B	11.5	80.2	0.94	0.92	39.4
<mark>6</mark>	R	<mark>226</mark>	0.0	<mark>1.000</mark> ³	62.7	LOS E	9.9	69.0	1.00	1.63	21.9
Approa	ach	776	0.0	1.000	27.9	LOS C	11.5	80.2	0.96	1.13	32.0
West: I	P 228										
10	L	255	0.0	0.867	22.7	LOS C	13.2	92.4	0.99	0.97	38.5
11	Т	1001	0.0	0.867	17.5	LOS B	15.3	107.0	0.99	1.07	37.6
Approa	ach	1256	0.0	0.867	18.5	LOS B	15.3	107.0	0.99	1.05	37.8
All Veh	icles	3358	0.0	1.000	23.0	LOS C	15.3	107.0	0.94	1.05	35.5

P228 / N2 PM - West Intersection

Moven	nent Pe	rformance	e - Vehi	cles							
Mov ID	Turn	Demand	HV	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: N	N2 Off ra	mp									
1	L	<mark>674</mark>	0.0	1.000 ³	18.3	LOS B	13.2	92.5	0.70	0.87	40.1
2	Т	23	0.0	0.986	67.8	LOS E	63.0	440.8	1.00	1.20	19.4
3	R	1884	0.0	0.977	76.1	LOS E	63.0	440.8	1.00	1.20	19.3
Approad	ch	2581	0.0	1.000	61.0	LOS E	63.0	440.8	0.92	1.11	22.4
East: P2	228										
5	Т	625	0.0	0.996	88.7	LOS F	44.5	311.6	1.00	1.64	16.9
<mark>6</mark>	R	<mark>168</mark>	0.0	<mark>1.000</mark> 3	64.1	LOS E	9.9	69.0	1.00	1.01	21.6
Approac	ch	793	0.0	1.000	83.5	LOS F	44.5	311.6	1.00	1.51	17.7
West: P	228										
10	L	102	0.0	0.676	31.2	LOS C	9.3	65.2	0.83	0.87	33.3
11	Т	577	0.0	0.677	24.0	LOS C	15.2	106.4	0.90	0.78	34.1
Approad	ch	679	0.0	0.677	25.1	LOS C	15.2	106.4	0.89	0.80	34.0
All Vehi	cles	4053	0.0	1.000	59.3	LOS E	63.0	440.8	0.93	1.14	22.5

P228 / N2 AM - East Intersection

Mover	nent Pe	erformance	- Vehic	les							
Mov ID	Turn	Demand	HV D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: ea	ast										
<mark>4</mark>	L	<mark>789</mark>	0.0	1.000 ³	17.2	LOS B	13.2	92.4	1.00	0.91	40.7
5	Т	1740	0.0	1.071	179.5	LOS F	243.4	1703.8	1.00	1.66	9.8
Approa	ch	2528	0.0	1.071	128.9	LOS F	243.4	1703.8	1.00	1.43	12.9
North: o	off ramp										
7	L	224	0.0	0.717	18.6	LOS B	8.1	56.9	0.49	0.78	39.9
8	Т	2	0.0	1.080	240.1	LOS F	15.4	107.5	1.00	1.52	7.7
9	R	100	0.0	1.088	248.3	LOS F	15.4	107.5	1.00	1.52	7.6
Approa	ch	326	0.0	1.087	90.4	LOS F	15.4	107.5	0.65	1.01	17.3
West: v	vest										
11	Т	1872	0.0	0.794	3.6	LOS A	34.5	241.8	0.42	0.40	51.5
12	R	68	0.0	1.037	161.2	LOS F	8.7	60.6	1.00	1.24	11.0
Approa	ch	1940	0.0	1.037	9.2	LOS A	34.5	241.8	0.44	0.43	45.6
All Veh	icles	4795	0.0	1.087	77.8	LOS E	243.4	1703.8	0.75	0.99	18.6

P228 / N2 PM - East Intersection

Movement Performance - Vehicles Mov ID Turn Demand HV Deg. Satn Average Level of 95% Back of Queue Prop. Effective Average													
Demand Flow	HV De	eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed				
veh/h	%	v/c	sec		veh	m		per veh	km/h				
<mark>638</mark>	0.0	1.000 ³	20.7	LOS C	13.2	92.4	1.00	0.89	38.2				
867	0.0	0.636	7.1	LOS A	20.0	139.7	0.58	0.53	46.9				
1505	0.0	1.000	12.9	LOS B	20.0	139.7	0.76	0.68	42.8				
<mark>412</mark>	0.0	<mark>1.000</mark> 3	44.6	LOS D	16.1	113.0	1.00	1.02	27.2				
63	0.0	1.114	265.2	LOS F	44.0	308.0	1.00	2.04	7.1				
257	0.0	1.113	273.4	LOS F	44.0	308.0	1.00	2.04	7.0				
732	0.0	1.113	143.8	LOS F	44.0	308.0	1.00	1.47	12.1				
2257	0.0	1.139	208.8	LOS F	254.5	1781.7	0.84	2.29	8.8				
<mark>204</mark>	0.0	<mark>1.000</mark> ³	27.3	LOS C	8.7	60.9	0.93	0.87	34.2				
2461	0.0	1.139	193.7	LOS F	254.5	1781.7	0.85	2.17	9.4				
4698	0.0	1.139	128.0	LOS F	254.5	1781.7	0.84	1.58	13.1				
	Demand Flow veh/h 638 867 1505 412 63 257 732 2257 204 2461	Demand Flow veh/h % 638 0.0 867 0.0 1505 0.0 412 0.0 63 0.0 257 0.0 732 0.0 732 0.0 2257 0.0 2257 0.0 2240 0.0	Demand Flow HV Deg. Satn Veh/h % v/c 638 0.0 1.000 ³ 867 0.0 0.636 1505 0.0 1.000 ³ 633 0.0 1.000 ³ 633 0.0 1.114 257 0.0 1.113 732 0.0 1.113 2257 0.0 1.139 204 0.0 1.000 ³	Demand Flow HV Deg. Satn Delay Average Delay veh/h % v/c sec 638 0.0 1.000 ³ 20.7 867 0.0 0.636 7.1 1505 0.0 1.000 ³ 20.7 412 0.0 1.000 ³ 44.6 63 0.0 1.114 265.2 257 0.0 1.113 273.4 732 0.0 1.113 143.8 2257 0.0 1.139 208.8 204 0.0 1.000 ³ 27.3 2461 0.0 1.139 193.7	Demand Flow HV Deg. Satn % Average Delay Level of Service veh/h % v/c sec 638 0.0 1.000 ³ 20.7 LOS C 867 0.0 0.636 7.1 LOS A 1505 0.0 1.000 12.9 LOS B 412 0.0 1.000 ³ 44.6 LOS D 63 0.0 1.114 265.2 LOS F 257 0.0 1.113 273.4 LOS F 732 0.0 1.113 143.8 LOS F 2257 0.0 1.139 208.8 LOS F 204 0.0 1.000 ³ 27.3 LOS C 2461 0.0 1.139 193.7 LOS F	Demand Flow HV Deg. Satn Weh/h Average Delay Level of Service 95% Back Vehicles 638 0.0 1.000 ³ 20.7 LOS C 13.2 638 0.0 1.000 ³ 20.7 LOS C 13.2 867 0.0 0.636 7.1 LOS A 20.0 1505 0.0 1.000 12.9 LOS B 20.0 412 0.0 1.000 ³ 44.6 LOS D 16.1 63 0.0 1.114 265.2 LOS F 44.0 257 0.0 1.113 273.4 LOS F 44.0 732 0.0 1.113 143.8 LOS F 254.5 204 0.0 1.000 ³ 27.3 LOS C 8.7 2461 0.0 1.139 193.7 LOS F 254.5	Demand Flow HV Deg. Satn weh/h Average V/c Level of Service 95% Back of Queue Vehicles Distance Distance 638 0.0 1.000 ³ 20.7 LOS C 13.2 92.4 867 0.0 0.636 7.1 LOS A 20.0 139.7 1505 0.0 1.000 12.9 LOS B 20.0 139.7 412 0.0 1.000 ³ 44.6 LOS D 16.1 113.0 63 0.0 1.114 265.2 LOS F 44.0 308.0 257 0.0 1.113 273.4 LOS F 44.0 308.0 732 0.0 1.113 143.8 LOS F 254.5 1781.7 204 0.0 1.000 ³ 27.3 LOS F 254.5 1781.7	Demand Flow HV Deg. Satn Average Delay Level of Service 95% Back of Queue Vehicles Prop. Distance 638 0.0 1.000 ³ 20.7 LOS C 13.2 92.4 1.00 867 0.0 0.636 7.1 LOS A 20.0 139.7 0.58 1505 0.0 1.000 ³ 24.6 LOS B 20.0 139.7 0.76 412 0.0 1.000 ³ 44.6 LOS D 16.1 113.0 1.00 633 0.0 1.114 265.2 LOS F 44.0 308.0 1.00 257 0.0 1.113 273.4 LOS F 44.0 308.0 1.00 732 0.0 1.113 143.8 LOS F 254.5 1781.7 0.84 204 0.0 1.000 ³ 27.3 LOS F 254.5 1781.7 0.85	Demand Flow HV Deg. Satn Average Delay Level of Service 95% Back of Queue Vehicles Prop. Distance veh Effective Stop Rate per veh 638 0.0 1.000 ³ 20.7 LOS C 13.2 92.4 1.00 0.89 867 0.0 0.636 7.1 LOS A 20.0 139.7 0.58 0.53 1505 0.0 1.000 12.9 LOS B 20.0 139.7 0.76 0.68 412 0.0 1.000 ³ 44.6 LOS F 44.0 308.0 1.00 2.04 257 0.0 1.113 273.4 LOS F 44.0 308.0 1.00 2.04 732 0.0 1.113 143.8 LOS F 254.5 1781.7 0.84 2.29 204 0.0 1.000 ³ 27.3 LOS F 254.5 1781.7 0.85 2.17				

Proposed Diverging Diamond Interchange by Aurecon South Africa – Movement Summaries

P228 / N2 AM - West Intersection

Move	ement Perf	ormance	- Vehi	cles							
Mov I	D ODMo	Demand	Flows [Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Total	ΗV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
SouthEast: Freeway Off-Ramp											
1	L1	367	2.5	0.286	9.9	LOS A	1.8	12.7	0.33	0.71	43.9
2	R3	892	2.5	0.358	10.8	LOS B	1.9	13.5	0.32	0.77	38.1
Approach		1259	2.5	0.358	10.5	LOS B	1.9	13.5	0.32	0.75	39.9
East:	East: Westbound In										
3	T1	291	2.5	0.217	6.6	LOS A	1.4	10.3	0.38	0.31	31.9
4	R3	446	2.5	0.276	5.6	LOS A	0.0	0.0	0.00	1.78	26.6
Appro	ach	737	2.5	0.276	6.0	LOS A	1.4	10.3	0.15	1.20	29.2
West:	Eastbound	External									
5	L1	242	2.5	0.127	9.5	LOS A	0.0	0.0	0.00	0.70	55.4
6	T1	951	2.5	0.645	17.9	LOS B	11.7	83.8	0.81	0.79	43.1
Approach		1193	2.5	0.645	16.2	LOS B	11.7	83.8	0.64	0.77	45.6
All Ve	hicles	3189	2.5	0.645	11.6	LOS B	11.7	83.8	0.40	0.86	41.4

P228 / N2 PM - West Intersection

Movement Performance - Vehicles												
Mov ID	ODMo	Demand	Flows D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
		Total	ΗV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
SouthE	ast: Freev	vay Off-Ram	пр									
1	L1	661	2.5	0.611	11.1	LOS B	6.5	46.2	0.54	0.77	42.2	
2	R3	1790	2.5	0.778	14.3	LOS B	9.6	68.6	0.55	0.84	33.6	
Approach		2451	2.5	0.778	13.4	LOS B	9.6	68.6	0.55	0.83	36.0	
East: Westbound Internal												
3	T1	536	2.5	0.400	7.1	LOS A	3.1	22.5	0.45	0.38	30.7	
4	R3	217	2.5	0.134	5.6	LOS A	0.0	0.0	0.00	1.78	26.6	
Approa	ch	753	2.5	0.400	6.7	LOS A	3.1	22.5	0.32	0.78	29.8	
West: E	Eastbound	External										
5	L1	97	2.5	0.051	9.5	LOS A	0.0	0.0	0.00	0.70	55.4	
6	T1	548	2.5	0.336	16.1	LOS B	5.1	36.6	0.70	0.71	44.9	
Approa	ch	645	2.5	0.336	15.1	LOS B	5.1	36.6	0.59	0.71	46.5	
All Veh	icles	3849	2.5	0.778	12.4	LOS B	9.6	68.6	0.51	0.80	37.7	

P228 / N2 AM - East Intersection

Performance	e - Veh	icles							
lo Deman	d Flows	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Westbound External									
1760	2.5	0.464	8.1	LOS A	0.0	0.0	0.00	2.32	49.0
642	2.5	0.828	22.4	LOS C	5.8	41.1	1.00	1.02	39.2
2402	2.5	0.828	11.9	LOS B	5.8	41.1	0.27	1.97	46.1
reeway Off-Ra	mp								
213	2.5	0.114	8.3	LOS A	0.0	0.0	0.00	0.61	47.3
95	2.5	0.099	11.3	LOS B	0.3	2.3	0.44	0.75	37.4
308	2.5	0.114	9.2	LOS A	0.3	2.3	0.14	0.65	44.4
und Internal									
1193	2.5	0.769	3.6	LOS A	5.1	36.5	0.55	0.52	33.2
650	2.5	0.709	11.9	LOS B	5.6	40.3	0.90	0.10	42.8
1843	2.5	0.769	6.5	LOS A	5.6	40.3	0.68	0.37	36.0
4553	2.5	0.828	9.6	LOS A	5.8	41.1	0.42	1.24	43.5
	o Deman Total veh/h und External 1760 642 2402 reeway Off-Ra 213 95 308 und Internal 1193 650 1843	Demand Flows Total HV veh/h % und External 1760 2.5 642 2.5 2402 2.5 2402 2.5 2402 2.5 reeway Off-Ramp 213 2.5 308 2.5 308 2.5 308 2.5 308 2.5 und Internal 1193 2.5 650 2.5 1843 2.5 2.5 2.5 2.5	Total HV V veh/h % v/c und External 1760 2.5 0.464 642 2.5 0.828 2402 2.5 0.828 2402 2.5 0.828 reeway Off-Ramp 213 2.5 0.114 95 2.5 0.099 308 2.5 0.114 und Internal 1193 2.5 0.769 650 2.5 0.709 1843 2.5 0.769 1843 2.5 0.769	Demand Flows Total Deg. Satn HV Average Delay veh/h % v/c sec und External 1760 2.5 0.464 8.1 642 2.5 0.828 22.4 2402 2.5 0.828 11.9 reeway Off-Ramp 213 2.5 0.114 8.3 95 2.5 0.099 11.3 308 2.5 0.114 9.2 und Internal 1193 2.5 0.769 3.6 650 2.5 0.709 11.9 143 2.5 0.769 5.6	Demand Flows Deg. Satn Average Delay Level of Service veh/h % v/c sec und External 1760 2.5 0.464 8.1 LOS A 642 2.5 0.828 22.4 LOS C 2402 2.5 0.828 11.9 LOS B reeway Off-Ramp 213 2.5 0.114 8.3 LOS A 95 2.5 0.099 11.3 LOS B 308 2.5 0.114 9.2 LOS A und Internal 1193 2.5 0.769 3.6 LOS A 650 2.5 0.709 11.9 LOS B 1843 2.5 0.769 3.6 LOS A	Demand Flows Deg. Satn Average Delay Level of Service 95% Back Vehicles Total HV V/c sec veh und External 1760 2.5 0.464 8.1 LOS A 0.0 642 2.5 0.828 22.4 LOS B 5.8 2402 2.5 0.828 11.9 LOS B 5.8 reeway Off-Ramp 213 2.5 0.114 8.3 LOS A 0.0 95 2.5 0.099 11.3 LOS B 0.3 308 2.5 0.114 9.2 LOS A 0.3 und Internal 1193 2.5 0.769 3.6 LOS A 5.1 650 2.5 0.709 11.9 LOS B 5.6 1843 2.5 0.769 6.5 LOS A 5.6	Demand Flows Deg. Satn Average Delay Level of Delay 95% Back of Queue Total HV No Service Vehicles Distance veh/h % v/c sec veh m und External 1760 2.5 0.464 8.1 LOS A 0.0 0.0 642 2.5 0.828 22.4 LOS C 5.8 41.1 2402 2.5 0.828 11.9 LOS B 5.8 41.1 reeway Off-Ramp 0.0 0.0 0.0 95 2.5 0.114 8.3 LOS A 0.0 0.0 95 2.5 0.114 9.2 LOS A 0.3 2.3 308 2.5 0.114 9.2 LOS A 0.3 2.3 und Internal 1193 2.5 0.769 3.6 LOS A 5.1 36.5 650 2.5 0.709 11.9 LOS B	Demand Flows Total Veh/h Deg. Satn HV Average Delay Level of Service 95% Back of Queue Vehicles Prop. Distance und External % v/c sec veh m Queued 1760 2.5 0.464 8.1 LOS A 0.0 0.00 0.00 642 2.5 0.828 22.4 LOS C 5.8 41.1 1.00 2402 2.5 0.828 11.9 LOS B 5.8 41.1 0.27 reeway Off-Ramp 0.114 8.3 LOS A 0.0 0.0 0.00 95 2.5 0.114 8.3 LOS A 0.3 2.3 0.44 308 2.5 0.114 9.2 LOS A 0.3 2.3 0.14 und Internal 1193 2.5 0.769 3.6 LOS A 5.1 36.5 0.55 650 2.5 0.709 11.9 LOS B 5.6 40.3 0.90	Demand Flows Deg. Satn Average Delay Level of Service 95% Back of Queue Prop. Queued Effective Stop Rate veh/h % v/c sec veh m per veh und External 1760 2.5 0.464 8.1 LOS A 0.0 0.00 0.00 2.32 642 2.5 0.828 22.4 LOS C 5.8 41.1 1.00 1.02 2402 2.5 0.828 11.9 LOS B 5.8 41.1 0.27 1.97 reeway Off-Ramp

P228 / N2 PM - East Intersection

Movement Performance - Vehicles													
Mov I	D ODMo	Demand	Flows D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average		
		Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
East:	Westbound	External											
5	L1	921	2.5	0.243	8.1	LOS A	0.0	0.0	0.00	2.32	49.0		
6	T1	509	2.5	0.938	45.1	LOS D	8.9	63.7	1.00	1.23	27.0		
Appro	bach	1430	2.5	0.938	21.3	LOS C	8.9	63.7	0.36	1.93	38.5		
North	NorthWest: Freeway Off-Ramp												
1	L1	449	2.5	0.240	8.3	LOS A	0.0	0.0	0.00	0.61	47.3		
2	R3	244	2.5	0.202	10.8	LOS B	0.9	6.7	0.30	0.75	38.2		
Appro	bach	693	2.5	0.240	9.2	LOS A	0.9	6.7	0.11	0.66	44.3		
West:	Eastbound	Internal											
3	T1	1978	2.5	0.823	2.2	LOS A	6.6	47.0	0.25	0.25	40.7		
4	R3	360	2.5	0.308	9.6	LOS A	3.5	24.8	0.65	-2.20	42.0		
Approach		2338	2.5	0.823	3.4	LOS A	6.6	47.0	0.31	-0.12	40.9		
All Vehicles		4461	2.5	0.938	10.0	LOS B	8.9	63.7	0.29	0.66	40.0		

aurecon

Aurecon, South Africa (Pty) Ltd 1977/003711/07

P.O. Box. 932 Pinetown 3600 South Africa

T +27 31 714 2500 F +27 31 702 0287 E eThekweni@aurecongroup.com W www.aurecongroup.com

Aurecon offices are located in: Angola, Australia, Botswana, China, Ethiopia, Hong Kong, Indonesia, Lesotho, Libya, Malawi, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.